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The timing of decisions

Day-ahead planning (slow – predominantly steam)

Intermediate-term planning (fast – gas turbines)

Real-time planning (economic dispatch)
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The timing of decisions

 Intermediate-term unit commitment problem
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 Real-time economic dispatch problem
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SMART-ISO: Calibration

 Any dynamic model consists of two fundamental 
equations:
» The decisions (determined by a policy)

» The dynamics (determined by the physics of the problem)

» We have initially focused on replicating the PJM policy

Once we calibrate our model, then we can start looking for 
a better policy.

( )t tx X S

 1 1, ,M
t t t tS S S x W 

( )PJM
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Onshore & offshore wind farms

 We were given access to data on the wind power 
generated by onshore wind farms within PJM

Proposal: Use onshore data to calibrate a stochastic model of 
forecasting errors.  Then use this model to create a simulated 
“actual” for offshore.
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Modeling renewables

1 year

 Wind power from all PJM wind farms

Jan     Feb     March    April    May    June    July    Aug    Sept      Oct    Nov     Dec 
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Energy from wind

30 days

 Wind power from all PJM wind farms



Forecasting wind

 Rolling 24-hour forecast of PJM wind farms



Generating wind sample paths

 Methodology for creating off-shore wind samples
» Use actual forecasts from on-shore wind to develop a stochastic 

error model
» Use meteorological forecasts for 12 different weeks using WRF
» Generate sample paths of wind by sampling errors from on-shore 

stochastic error model
» Repeat this for base case and five buildout levels

 Our sample paths are based on:
» Four months: January, April, July and October
» Forecasts from three weeks each month
» Seven sample paths generated around each forecast
» Total of 84 sample paths representing a cross section of seasons 

and weather patterns

 Is this enough?



Simulating onshore wind

 Actual (observed) time series (chosen farm only):



Simulating onshore wind

 Histogram of the prediction error (observed/simulated 
– forecast) for the chosen farm only:



Simulating onshore wind
 Cumulative histogram of the # of consecutive time intervals the 

observed/simulated time series is above the forecasted one 
(chosen farm only):



Simulating onshore wind
 Cumulative histogram of the # of consecutive time intervals the 

observed/simulated time series is below the forecasted one 
(chosen farm only):



Simulating onshore wind

 Simulated time series #1 (chosen farm only):



Simulating onshore wind

 Simulated time series #2 (chosen farm only):



Simulating onshore wind

 Simulated time series #5 (chosen farm only):



 Histogram of the prediction error (observed/simulated –
forecast) for all farms in the Plains, before scaling up the 
correlation function:

Simulating onshore wind



 Histogram of the prediction error (observed/simulated –
forecast) for all farms in the Plains,   after scaling up the 
correlation function:

Simulating onshore wind



Simulating onshore wind

 Actual (observed) time series (all farms in the Plains):



Simulating onshore wind

 Simulated time series #1 (all farms in the Plains):



Simulating onshore wind

 Simulated time series #4 (all farms in the Plains):



Simulating onshore wind

 Simulated time series #5 (all farms in the Plains):
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Simulating offshore wind

 Offshore wind – Buildout level 5

Forecasted wind
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 Dealing with uncertainty
» We have to design policies to manage the different 

forms of uncertainty.
» We do this by looking for robust policies, which are 

rules for making decisions.
» We write our optimization problem in the form:

Designing a policy
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 Dealing with uncertainty
» We have to design policies to manage the different 

forms of uncertainty.
» We do this by looking for robust policies, which are 

rules for making decisions.
» We write our optimization problem in the form:

» We refer to this as the base model which is typically 
calculated as a simulation:
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1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric functions

2) Cost function approximation (CFAs)
»

3) Policies based on value function approximations (VFAs)
»

4) Lookahead policies
» Deterministic lookahead:

» Stochastic lookahead (e.g. stochastic trees)

Four classes of policies
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Stochastic lookahead policies



Stochastic lookahead policies



Stochastic lookahead policies



 A deterministic lookahead model
» We use a point forecast of the future

» These decisions need to made with different horizons
• Steam generation is made day-ahead
• Gas turbines can be planned an hour ahead or less

A hybrid lookahead-CFA policy

Steam generation Gas turbines

 ' ' 1,...,24

' ' 1,...,24

48

' '
'

( )

   min ( , )
tt t

tt t

t

tt ttx t t
y

C x y











 A deterministic lookahead policy
» We use a point forecast of the future

» This would be very sensitive to forecast errors.

A hybrid lookahead-CFA policy
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 A robust cost function approximation
» We add in up and down fast ramping reserves

» This is a (parametric) cost function approximation, 
parameterized by the ramping parameters      .

A hybrid lookahead-CFA policy

max
, ' , ' '

max
, ' , ' '

        Up-ramping reserve

      Down-ramping reserve

up
t t t t tt

down
t t t t tt

x x L

x x L





 

 





 We then have to tune the parameters of this policy 
in our stochastic base model.

» The challenge now is to adaptively estimate the 
ramping constraints                         .  

Designing a policy
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SMART-ISO: Offshore wind study
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5‐min Time Intervals 

SMART‐ISO ‐ Unconstrained Grid ‐ 22‐28 Jul 2010 
Wind Buildout 4 ‐ No ramping reserves 

Actual Demand (Exc) 
Simulated (Used) Wind 
Simulated Storage Power 
Simulated Fast Power 
Simulated Slow Power 
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SMART-ISO: Offshore wind study

Mid-Atlantic Offshore Wind 
Integration and Transmission 
Study (U. Delaware & partners, 
funded by DOE) 

29 offshore sub-blocks in 5 
build-out scenarios:
» 1: 8 GW
» 2: 28 GW
» 3: 40 GW
» 4: 55 GW
» 5: 78 GW



SMART-ISO: Offshore wind study

 Outage probabilities over 21 scenarios for 
January, April and October:
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SMART-ISO: Offshore wind study

 Outage probabilities over 21 scenarios for July



SMART-ISO: Offshore wind study

 January, 2010

1 2 3 4 5

Buildout levels

Perfect forecast

Imperfect 
forecast



SMART-ISO: Offshore wind study

 January, 2010

Used wind

Gas turbines
Perfect forecast

Imperfect 
forecast

Imperfect 
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Perfect forecast



SMART-ISO: Results May 2014



SMART-ISO: Results May 2014



SMART-ISO: Results May 2014



SMART-ISO: Offshore wind study
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Observations
 Steps and ceilings:

» Grid capacity - The current grid does not have the capacity to 
handle significant levels of off-shore wind.

» Reserve capacity - Uncertainty in forecasts requires significant 
levels of reserves, and increased use of gas turbines.

» Faster planning – Transition IT-SCED to 10 or 15 minute updates; 
reduce the lag between run time and implementation.

» Forecasting – Better day-ahead and intermediate forecasting.
» Storage – Grid level battery storage can smooth both diurnal cycles 

as well as stochastic volatility.
» Demand response – We can reduce the load on the network, but 

notification times are important.
» Generator investments – More and faster-ramping generators.
» Cross-ISO integration – Coordinate the entire eastern interconnect.




