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(Some) Historical Barriers to Adoption ofg =
Stochastic Unit Commitment

Laboratories

= We can’t create sufficiently accurate sets of scenarios to
capture load and renewables uncertainty

= Even if we could create accurate sets of scenarios, the
resulting models are too difficult to solve

= Even if we could solve the resulting models, it would require
significant HPC resources — which is a major impediment to
industrial adoption
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Topics That Will Not Be Discussed... @&z

= Unless provoked!

= Robust optimization “versus” stochastic programming

= Market design and stochastic programming




Context: An ARPA-e GENI Project (@i,

Execute stochastic unit commitment (UC) at scale, on real-world
data sets
= Stochastic UC state-of-the-art is very limited (tens to low hundreds of units)

= Qur solution must ultimately be useable by an ISO

Produce solutions in tractable run-times, with error bounds

= Parallel scenario-based decomposition
For both upper and lower bounding (Progressive Hedging and Dual Decomp.)

= Quantification of uncertainty
Rigorous confidence intervals on solution cost
Employ high-accuracy stochastic process models
= Leveraged to achieve computational tractability while maintaining solution
quality and robustness
Demonstrate potential cost savings on an ISO-scale system at
high renewables penetration levels




The General Structure of a Stochastic [&s.
Unit Commitment Optimization Model

Objective: Minimize expected cost

0 T . .
Lo, 00,0 0, vrenn es s First stage variables:
4~: .:o.o:o .o.oo: oo:.:v i Uniton/Off
% 8-e9 o9 o000 e oo
reee e T Tewe s Te T T Nature resolves uncertainty
::‘.::.?. ..t. .’.. :;O.. | b Load
° ° 10Hourofday15 ® ® ® Renewables Output

« Forced outages

Second stage variables
(per time period):

« Generation levels

* Power flows

Scenario 1 Scenario 2 ... ScenarioN * Voltage angles




Uncertainty in DAM, RUC, and SCEDZm &=,
Stochastic Programming Models

= Reliability Unit Commitment
= Renewables generator output, load, forced (unplanned) outages
= Fewer binaries than DAM, long time horizon, many scenarios

= | ook-Ahead Unit Commitment
= Similar to Reliability Unit Commitment
= Fewer binaries than RUC, short time horizon, few scenarios

= Day-Ahead Unit Commitment

= |n contrast to RUC and SCED2, an ISO can’t really make direct use of a
stochastic UC in the DAM without changing DAM procedures

= We are eager to discuss ideas offline
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Core Unit Commitment Model ) .

= Basic deterministic / single-scenario unit commitment model
= Carrion and Arroyo (2006)
= Alternative to the well-known 3-binary variable formulation

= Based on empirical evidence developed during this and prior
projects, we find no serious performance differences between
the Carrion and Arroyo formulation and other formulations

= Highly problem-dependent

= Qur UC model deviates from the core Carrion and Arroyo
model in two key ways
= Different startup / shutdown cost modeling components
= |nclusion of high-fidelity ancillary services modeling components

= Qur modelis cross-validated with Alstom’s UC model
= Accurate to within solver tolerances




(Some) Historical Barriers to Adoption ofg s,
Stochastic Unit Commitment
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= We can’t create sufficiently accurate sets of scenarios to
capture load and renewables uncertainty




On Scenario Generation for )
Stochastic Unit Commitment...

= Stochastic programming, like all things algorithmic, operates
on the “GIGO” principle (Garbage In, Garbage Out)

= |f you don’t get the scenarios right, then the solution will be useless

= Qur observation from our ARPA-e project is that scenario
generation dominates the time for algorithm development in
stochastic unit commitment

= Roughly an 80%/20% split in “practice”

"= There is a huge historical database of forecasted and actual
observations, which can be leveraged to create accurate
stochastic process models of load, wind, and (maybe) solar

= This is operations — no need to pretend that distributions don’t exist



Load Scenario Generation: ISO-NE @

= We have developed a novel technique for approximating
stochastic process models using historical weather data and
corresponding actual realizations
= Based on epi-spline technologies (Wets et al.)
= Not Monte Carlo, not AR(I)MA
= Approximates the distributions — no sampling required!

= Accuracy of the expected day-ahead load is consistent with
that generated by ISO-NE point forecasts in practice

Segments (Ng)
Season 1 3 5 7
Fall 545 4.66 4.2 3.99
Spring 3.1 2.88 2.67 2.73
Summer 10.25 4.82 4.14 4.19
Winter 5.25 3.32 3.29 347

MAPEs
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lllustrative Load Scenarios: ISO-NE  [@.

| e—e Expected load e—e Actual load —e Scenariosl

If the historical data
indicates no variability,
then the scenarios will
reflect that consistency

3500 |

3000

2500+

e—e Expected load eo—e Actual load e —e Scenarios

4000

0 5 10 15 20
Time [hours]

3500 -

Captures variability in
load when present — 3000/
but predictions are not
perfect!

2500




Sandia
A | Netiona
Laboratories

Wind Scenario Generation: BPA

Scenarios generated using Scenarios generated using
Pinson et al. method our epi-spline approach
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Note: Real wind profiles show significant ramps, but not as extreme as
those obtained using (e.g.,) the Pinson et al. method




Scenario Generation: Discussion ) .

= We can and should leverage the significant volume of
historical data concerning load and renewables forecast /
actuals
= Arguably do not need stochastic forecasts from vendors
= |nstead, we can build stochastic models from historical point forecasts

= Stochastic process model accuracy can approach that of state-
of-the-art point forecasting techniques
= But in addition represents variability

= Approximation of stochastic process models, rather than
Monte Carlo sampling, can yield significant reductions in the
number of scenario required for stochastic unit commitment

= Enabled by epi-spline-based models of stochastic load and wind




(Some) Historical Barriers to Adoption ofg s,
Stochastic Unit Commitment

Laboratories

= Even if we could create accurate sets of scenarios, the
resulting models are too difficult to solve




On the Difficulty of Stochastic Unit
Commitment: Extensive Forms

= RUC Test Instance: WECC-240++

= J.E. Price, Reduced Network Modeling of WECC as a Market
Design Prototype, 2011 IEEE PES General Meeting

= Changes necessary to create viable RUC test case
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= Addition of realistic ramping rates and min up/down time constraints

= Results

Table 3 Solution quality statistics for the extensive form of the WECC-2/0-r1 instance, given

4 hours of run time.

cenarios jective Value ower Boun ap 7o un Time (s
# S I Objective Val MIP L Bound Gap % Run Ti

3 64278.20 63797.72 0.75 14491
5 62740.67 62180.86 0.89 14723
10 61563.10 60835.45 1.18 14630
25 61455.55 59963.78 2.36 14960
50 61911.74 59540.87 3.83 15480
100 62388.85 59548.23 4.51 16562



Scenario-Based Decomposition via [@Ex.
Progressive Hedging (PH)

PH lteration O:
Solve Individual
Scenario MIPs
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Progressive Hedging: ) e,
Parallelization and Bundling

" Progressive Hedging is, at least conceptually, easily parallelized
= Scenario sub-problem solves are clearly independent

= Advantage over Benders, in that “bloat” is distributed
Critical in low-memory-per-node cluster environments
= Parallel efficiency drops rapidly as the number of processors increases

But: Relaxing barrier synchronization does not impact PH convergence

= Why just one scenario per processor?

= Bundling: Creating miniature “extensive forms” from multiple scenarios
Diverse or homogeneous scenario bundles?

= Empirically results in a large reduction in total number of PH iterations
Growth in sub-problem cost must be mitigated by drop in iteration count
In practice, mitigation is enabled by cross-iteration warm starts



Our Hardware Environments

= Qur objective is to run on commodity clusters

= Utilities don’t have, and don’t want, supercomputers
= But they do or might have multi-hundred node clusters
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= Sandia Red Sky (Unclassified Segment) — 39t" fastest on TOP500

= Sun X6275 blades

= 2816 dual socket / quad core nodes (22,528 cores)
2.93 GHz Nehalem X5570 processors

12 GB RAM per compute node (1.5 GB per core) << IMPORTANT!

= For us, the interconnection is largely irrelevant
= Red Hat Linux (RHEL 5)

= Multi-Core SMP Workstation
= 64-core AMD, 512GB of RAM
= Foronly S17K from Dell....




Progressive Hedging Results:

WECC-240++
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Table 7 Solve time (in seconds) and solution quality statistics for PH executing on the WECC-
240-r1 instance, with o = 0.5, p = 6, and v = 0.025

# Scenarios  Convergence Metric  Obj. Value PH L.B. # Vars Fx. Time
64-Core Workstation Results
3 0.0 (20 iters) 64213.397 63235.381 4080 508
5 0.0 (in 18 iters) 62642.531 61767.253 4079 674
10 0.0 (in 35 iters) 61396.553 60476.604 4066 648
25 0.0 (in 22 iters) 60935.040 59992.622 4066 761
50 0.0 (in 15 iters) 60625.149 59631.839 4034 1076
100 0.0 (in 25 iters) 61155.387 60014.571 4080 1735
Red Sky Results
50 0.0 (in 16 iters) 60623.343 59779.813 4007 404
100 0.0 (in 25 iters) 61120.943 60275.744 4080 549

ISO-NE results are obtained on Red Sky on average in 15 minutes,

25 minutes in the worst case (with 100 scenarios)




But PH is Just a Heuristic... h) ..

= Sois any complete optimization algorithm that is not allowed
to run to completion
= Key point is that we don’t believe it will be possible to obtain optimal
solutions to stochastic unit commitment problems at scale, in
tractable wall clock times (< 5 minutes)
= But PH doesn’t provide bounds!
= No longer true
= Now comes with (rather tight) lower bounds
= See “Obtaining Lower Bounds from the Progressive Hedging Algorithm
for Stochastic Mixed-Integer Programs” (Under review)
= More seriously

= We have a lot of work going on in the realm of lower bounding,
which we are happy to discuss off-line




(Some) Historical Barriers to Adoption ofg s,
Stochastic Unit Commitment
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= Even if we could solve the resulting models, it would require
significant HPC resources — which is a major impediment to
industrial adoption




On HPC and Stochastic Unit ) i
Commitment...

= We observe that stochastic unit commitment solvers do not
require HPC for execution on industrial scale problems

= Commodity clusters are sufficient for many analyses

= Execution on the cloud (e.g., Gurobi with Amazon EC2) is feasible

= There is little evidence that hundreds of thousands to millions
of scenarios are required for stochastic unit commitment

= Approximation of stochastic process models can avoid scalability
issues associated with Monte Carlo approaches




On Bounding, Incumbents, and =
Stochastic Unit Commitment

Laboratories

= Assertion

= We are never going to solve large-scale stochastic unit commitment
problems to optimality in operational contexts

= Small gaps (1-2%) are sufficient
= |f you're comfortable with reserve margins...

= There is much discussion in the research literature of
bounding versus finding high-quality incumbents

= We don’t think the emphasis is where it needs to be

= Qur findings
= Finding high-quality lower bounds is relatively easy
= Locating high-quality incumbents (solutions) is very difficult




Our Next Steps for Stochastic Unit &z
Commitment (1)...

= We feel that a “continual commitment” process is the ultimate
conclusion of stochastic unit commitment research

= But what does this entail?

= More emphasis on multi-stage stochastic unit commitment
= Enables more flexibility, required for minimal discontinuities between

stages
= Algorithmic extensions are conceptually straightforward, but in reality...

= Non-trivial research questions relating to evaluation, comparison

= Strong focus on incremental forecast update technology
= Present models exhibit discontinuities at (artificial) decision boundaries

= Allows commitment processes to take advantage of information as it

becomes available
I ———————————————————



Our Next Steps for Stochastic Unit e
Commitment (2)...

Laboratories

= How do we effectively set endogenous and dynamic reserve
levels in stochastic unit commitment?

= Reserves will always exist, but at a significantly reduced level

= Analysis of scenarios should provide some indication of the
degree of reserves required

= E.g., lower variability => lower reserves

= Scenarios capture aspects of uncertainty, but not everything

= Understanding the remaining degrees of freedom (relating to
modeling assumptions) will drive new methods for reserve
quantification



Our Next Steps for Stochastic Unit e
Commitment (3)...

Laboratories

= QOperations is a unique situation for stochastic programming
= We are repeating the game, with no risk of ruin

= Can we leverage any information from prior to solves to accelerate
time-to-solution?

= Even in deterministic unit commitment...
= Can we mine historical information to accelerate branch and cut?

= |n stochastic unit commitment...

= Can we mine similar days from the past to provide good initial
conditions for algorithms (e.g., weights in PH)?

= Pilot experiments indicate order-of-magnitude run-times are possible



Final Thoughts L

= Even after demonstrating operational feasibility, there remain
significant barriers to adoption of stochastic unit commitment

= The biggest open issues involve human and social dimensions
= How to effectively communicate a stochastic solution to an operator?

= How to analyze / interpret operator perceptions of risk in an
algorithmic context?

= Doesn’t mean there isn’t research — but it’s different research

= Not necessarily algorithmic, but equally important for T2M
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