SPP Integrated Marketplace-Unit Commitment

FERC Technical Conference on Increasing Real-Time and Day-Ahead Market Efficiency through Improved Software

June 22-24, 2015

Gary Cate SPP
Jie Wan Alstom Grid
David Gray Alstom Grid
Xing Wang Alstom Grid
Southwest Power Pool

• Independent, non-profit, Regional Transmission Organization
• ~550 employees
• Membership in 8 states
 • Arkansas, Kansas, Louisiana, Missouri, Nebraska, New Mexico, Oklahoma, and Texas
• Located in Little Rock, Arkansas
 • 24 x 7 operations
 • Reliability Coordination
 • Market Operations
 • Transmission Planning
 • Tariff Administration
 • Regional Scheduling
What is Integrated Marketplace?

• New “Day-2” Market Implemented March 1, 2014
 ➢ Replaced Energy Imbalance Service (EIS) Market launched in 2007
• SPP consolidated all EIS member Balancing Authorities (BA) into one SPP BA
• Day-Ahead Market, Reliability Unit Commitment, Real-Time Balancing, and Transmission Congestion Rights (TCR)
 ➢ Products: Energy, Regulation-Up, Regulation-Down, Spinning, Supplemental
 ➢ Security Constrained Unit Commitment (SCUC), Security Constrained Economic Dispatch (SCED), Co-Optimization
Marketplace After 12 Months

• 122 Market Participants
 – Financial only and asset owning

• SPP BA has maintained control performance standards
 – Minimized inadvertent as much as possible

• System availability has exceeded expectations
 – Day-Ahead Market has posted on-time every day except once in early June (due to a modeling issue)
 – Real-Time Balancing Market has successfully solved 99.98% of all intervals
 ▪ Considerably higher than during Market Trials
Capacity Overage

- EIS (Year prior to Go-Live)
- IM (Year after Go-Live)

*Overage=Economic Max - Load - NSI - (RegUp+SPIN+SUPP)
Reliability Unit Commitments

Unit Commitment Percentages (Number of Commitments)
- 72% of commitments have come out of the DA Market
- 17% of commitments were self-commits after the DA Market
- 11% of commitments have come out of the RUC process

Unit Commitment Percentages (MWh’s of Commitments)
- 95.3% of commitments have come out of the DA Market
- 2.2% of commitments were self-commits after the DA Market
- 2.5% of commitments have come out of the RUC process
Average Hourly Load Participation in DA Market

- Cleared Demand as a Percent of Reported Load - OffPeak
- Cleared Demand as a Percent of Reported Load - On Peak
Virtual Participation in Marketplace

- Mar-14: 4.0% Cleared Virtual Bids, 2.0% Cleared Virtual Offers
- Apr-14: 9.0% Cleared Virtual Bids, 1.0% Cleared Virtual Offers
- May-14: 7.0% Cleared Virtual Bids, 3.0% Cleared Virtual Offers
- Jun-14: 6.0% Cleared Virtual Bids, 4.0% Cleared Virtual Offers
- Jul-14: 5.0% Cleared Virtual Bids, 5.0% Cleared Virtual Offers
- Aug-14: 6.0% Cleared Virtual Bids, 4.0% Cleared Virtual Offers
- Sep-14: 7.0% Cleared Virtual Bids, 3.0% Cleared Virtual Offers
- Oct-14: 9.0% Cleared Virtual Bids, 1.0% Cleared Virtual Offers
- Nov-14: 7.0% Cleared Virtual Bids, 3.0% Cleared Virtual Offers
- Dec-14: 6.0% Cleared Virtual Bids, 4.0% Cleared Virtual Offers
- Jan-15: 8.0% Cleared Virtual Bids, 2.0% Cleared Virtual Offers
- Feb-15: 6.0% Cleared Virtual Bids, 4.0% Cleared Virtual Offers
Challenges

- Involved extensively in IM market process:
 - SCUC in DAMKT, DA-RUC, DBDA-RUC, ID-RUC, PA-RUC
 - One engine for all
 - Study window, input data, and objectives all vary by type
 - Flexible, robust and efficient
Challenges

• Large complicated SCUC model:
 – Individual Regulation up and regulation down AS product
 – Recallable Transactions: supplemental reserve
 – Variable Energy Resources (VERs): regulation down only
 – External Dynamic Resources (EDRs):
 ▪ AC-Ties: provide AS by deviating the scheduled energy output
 ▪ DC-ties: bi-directional energy transfer
 – Demand Response Resources: dispatchable or block, unlocked for emergency
 – Linearize ALL the offers (resources, bids, virtual): more continuous variables
 – Large number of resources have maximum daily energy constraints or maximum run time constraints
Challenges

• Include Mitigation process:
 – Normal SCUC solve: non-mitigated solve
 – Mitigated SCUC solve: Market Impact test solve

• Complex Logic for scarcity and emergency conditions:
 – Scarcity and emergency condition detection with corrective actions
 – Different procedures in DA and RUC
 – AS Scarcity, Capacity Shortage and Excess Gen
 – Non-firm transactions curtailment
 – Emergency Range Release/Reliability resource commitment
 – De-commitment of Must Run resources under minimum generation emergency
Performance

• Configurations:
 – Linux application server
 – Xeon E5-2690 (v1) processor
 – CPLEX 12.5
 – Expect to reach 0.1% MIP Relative Gap within 1200 seconds
 – Configurable for single thread or multiple threads
 – Single threaded performance of a CPU still tends to dominate the factors of MIP solve time
 – Utilizing CPLEX’s parallel MIP methods have shown solve time improvement in some cases
Performance

• Observed issues in the earlier phase of the project:
 – Timed out case with unacceptable solution
 – Numerical instability due to Scaling issue: large penalty price vs. small offer price and sensitivities. Slow convergence when the actual gap is getting small
 – Penalty price setting impact the performance and case dependent
 – Terminate prematurely with large objective cost dominated by violation penalty cost
 – Incorrect identify scarcity and emergency condition
 – Easily causing inconsistency between mitigation test solve and mitigated solve
Multi-stage SCUC Algorithm

• Resource Feasibility Stage:
 – Modeling
 ▪ Ignore operating costs and system constraints
 ▪ Minimize resource constraint violations
 – Goals and benefits
 ▪ Handle input data/condition conflicts at resource level
 ▪ Remove unnecessary violations
 ▪ Improve robustness and solution quality
 ▪ Decoupled model at resource level
 ▪ Quick solve
Multi-stage SCUC algorithm

• System Feasibility stage:
 – Modeling
 ▪ Ignore operating cost
 ▪ Include system constraint and hard resource constraints with necessary relaxation
 ▪ Minimize system constraint violation
 – Goals and benefits
 ▪ Not solved for optimal SCUC solution
 ▪ Quickly detect scarcity/emergency conditions
 ▪ Avoid incorrect determination due to the penalty price setting vs large SU/noload cost
Multi-stage SCUC algorithm

• Optimal Solution stage:
 – Modeling
 ▪ Full SCUC model including operating cost
 ▪ Hard resource constraints and some system constraints with pre-determined relaxation
 – Goals and Benefits
 ▪ Focus on optimal SCUC solution
 ▪ Warm-start from system feasibility stage
 ▪ the only solve needed or mitigation impact test solve and mitigated solve
 ▪ Warm-start from non-mitigated optimality solve
 ▪ Better solution qualify even when the solve times out
Result Comparison

<table>
<thead>
<tr>
<th>Steps</th>
<th>Result</th>
<th>Performance</th>
<th>Sub-steps</th>
<th>Result</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Resource Feasibility</td>
<td>14 max-run time violations 1 max daily energy violation</td>
<td></td>
</tr>
<tr>
<td>Normal solve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Obj. 33174382</td>
<td>Vio. 206845</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RscOprcost 32967536</td>
<td>Solution time 198.652(s)</td>
<td>Act. Gap 0.09% Abs. Gap 30914</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>System Feasibility</td>
<td>no system constraint violation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Obj. 0</td>
<td>Vio. 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Solution time 71(s)</td>
<td>Act. Gap 0% Abs. Gap 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Optimality solved with the desired gap</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Obj. 33412988</td>
<td>Vio. 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Solution time 220.984(s)</td>
<td>Act. Gap 0.02% Abs. Gap 7886</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reliability commitment</td>
<td>Objective 33412988</td>
<td>Vio. 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Solution time 101.984(s)</td>
<td>Act. Gap 0.04% Abs. Gap 13688</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mitigate d SCUC</td>
<td>disabled due to emergency condition</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Optimality solved with the desired gap</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Future Challenges

• Desire for ever increasing performance to shorten the time taken to solve.

• Enhanced Combined Cycle

• Grouped Resource constraint modeling (shared startup transformer or shared plant operators)

• Decrease mismatch in SCUC and SCED models
Helping our members work together to keep the lights on... today and in the future