80 ANALYSISOF UPPER RESERVOIR BARRIERS

Each of the physical Barriers cited on Table 6-1 have been analyzed from the perspective of the
postulated failure modes indicated thereon. Asit was not practical to measure each of the
parameters necessary for precise analysis, we performed a series of parametric analyses over the
range of parameters deemed appropriate based on judgment, values cited in the professional
literature and actual observations and measurements obtained from the field.

Following the discussion of the analyses completed, we summarize each of the physical Barriers
and cite the impact of each in terms of Root Cause or Contributing Cause. Asdefined herein, a
root cause is a cause that directly caused the Event and a primary, secondary or tertiary
contributing cause is a cause that may have contributed to, but would not, either singularly or in
combination with other primary, secondary or tertiary causes, have caused the Event. The
descriptor primary, secondary or tertiary reflects our assessment of the degree that the cause
contributed to the Event, with atertiary cause having little or no effect on the Event

8.1 OVERTOPPING ANALYSIS

Theinitial task in our overall analysis effort was to develop an understanding of the portions of
the Dike where overtopping occurred on December 14, 2005 and the magnitude of flow at these
overtopping zones. Thistask was undertaken with a study of the most recent elevation survey of
the top of the Parapet Wall as provided by AmerenUE. For Wall Segments 70 through 100
where AmerenUE has no recent survey data exists, the elevation of the top of each wall segment
was estimated using the average Parapet Wall height, the maximum settlement between 2003 and
2005, and the elevation of monuments on the crest of the Dike in 2003. Using these elevations,
flow was estimated by approximating each wall segment as a broad-crested weir. The highest
level of water in the Upper Reservoir on December 14, 2005 was estimated at 1597.63 based on
the Siemens report provided in Appendix A. At this elevation, overtopping of the parapet wall
will occur at the locations shown on Figure 8-1 with the corresponding flows for each area.
Details of flow characteristics at the lowest wall segment in each overtopping area are shown on
Figures8-2 through 8-4. Overtopping flow isafunction of time at each of the four overtopping
zones. Flow also continues to go into storage, thereby continuing to raise the level in the Upper
Reservoir until inflow equals outflow. The time at which the upper reservoir isat 1597.00 is
taken ast = 0. Results shown on Figures8-1 through 8-4 are for awater level of 1597.63, which
occurs after approximately 10 minutes, 20 seconds at a pump rate of 2600 cfs.
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Estimated Overflow at Time = 10 min 20 sec

H,,, = 0.07 ft
Pool Level = EL 1597.63*
(t=0is EL. 1597.00)

Qp = 235 cfs ' | : ' Segment 44

ment 48

Segment 88 =053t =
. 5o T g Hipu = 0,35 Rt
B - Ereach 0 OrE 219 ofs
I = moderate 1o Significant Displacement
[ 1 =Minimal o no Displacement Segment 72

B = overlow occurred
Segment 56

*Estimated Pool Elevation at time of breach Segment 70

FIGURE 8-1

OVERTOPPING ZONES



Wall Segment 95 at Time = 10 min 20 sec

Peak Pool @ EL 1597.63 Flow Projection = 3.23 fi
Z e Q5 = 38.1cfs
T ‘ Over 60ft Length
Y
H,=0.38ft 4.6 n) \\ (Qrnz= 0.64cTs/Mt)

Estimated 9.95°

Estimated Top of Wall
EL 1597.25 (Avg.)

V

Sy

= 25.8 fps

impact

FIGURE 8-2

WEIR FLOW PROJECTION -—WALL SEGMENT 95

The results of the overtopping analysis shown on Figures 8-1 and Figure 8-2 indicate that the
total flow near Parapet Wall Segment 95, where the Breach occurred, is estimated to be 235 cfs
at t = ~10 minutes, 20 seconds. Thetotal flow over Wall Segment 95 (60 feet long) having an
average top Elevation of 1597.25is 38.1 cfs, or 0.64 cfg/ft. The overtopping flow rapidly
infiltrated into the Rockfill Dike, resulting in arapid rise in the phreatic surface and the pore
pressure on the critical Dike/foundation interface.

Thetotal flow over Wall Segment 72 (78 feet long) having an average top Elevation of 1597.10
is80.1 cfs, or 1.03 cfg/ft. Thisisdlightly greater than at the Breach Areabut over amore
concentrated zone. In the southwest corner as shown on Figure 8-4 for Parapet Wall Segment
48, the flow is estimated to be 33.1 cfs over alength of 60 feet or about 0.55 cfs per foot. These
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flows caused Parapet Wall Segment Nos. 72 and 48 to be undermined asillustrated below on
Figure 8-5 and Figure 8-6 respectively.

Wall Segment 72 at Time = 10 min 20 sec

Peak Pool @ EL 1597.63 Flow Projection = 3.89 fi
v — Q. = 80.1cfs
Y Over 781t Length
H,=0.53ft (6.4 in.) \‘\\ (Q. = 1.03 cfs/ft)

Estimated 9.88°

Estimated Top of Wall

EL 1597.10 (Avg.) ._,\
v

= 26.1 fps

impact

-

FIGURE 8-3

WEIR FLOW PROJECTION -WALL SEGMENT 72



Wall Segment 48 at Time = 10 min 20 sec

Qe = 33.1cfs

Peak Pool @ EL 15397.63 Flow Projection = 3.15 fi
v in
g .
\\\\
H,=0.361f (4.3 in) N

Estimated Top of Wall
EL 1597.27 (Avg.)

FIGURE 8-4

\

Over 60ft Length
(Q0.= 0.55 cfs/fft)

Estimated 9.95°

impact

= 25.8 fps

WEIR FLOW PROJECTION —WALL SEGMENT 48
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FIGURE 8-5

PARAPET WALL SEGMENT 72 UNDERMINING

FIGURE 8-6

PARAPET WALL SEGMENTS44 TO 56 UNDERMINING
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8.2 PARAPET WALL STABILITY AND STRUCTURAL ANALYSIS

An analysis of the stability and structural integrity of the Parapet Wall was performed to assess
the possibility that the Wall failed due to the water pressure associated with the Upper Reservoir
level being in the range of El. 1598. Our analysis sets aside the question raised above as to
whether it was good design practice in the 1960s to consider parapet walls on the crest of adam
in general as ameans of retaining water on an “everyday” basis as opposed to storm conditions

or wave conditions.

Our analysis considered six situations as follows:

8.2.1

Figure 8-7 below isare-print of the original analysis taken from the original construction

drawings.

R5 063551/06

The original analysis of the Wall as presented on the
construction drawing for the project.

New overturning analysis of the Wall with the water level as
high as El. 1599 with no undermining.

New dliding analysis of the Wall with the water level as high as
El. 1599 with no undermining.

New overturning analysis of the Wall with the water level as
high as El. 1599 with undermining.

New dliding analysis of the Wall with the water level as high as
El. 1599 with undermining.

Structural analysis check of the concrete thickness and steel
reinforcing.

Original Analysisof the Wall
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FIGURE 8-7

ORIGINAL WALL ANALYSIS

We have afew comments on thisanalysis. Firstly, the designer summed moments about Point A
at the downstream bottom corner of the vertical stem of some of the acting forces- not all.
Theoretically, one can sum moments about any point so long as all forces and moments are
considered. Practioners normally sum moments about the downstream toe, i.e., about the lower
right hand corner of the base and all of the forces and moments would be considered.

Secondly, the originating analyst ignored the weight of the concrete and the soil pressure, and
thirdly, the analyst ignored any uplift pressure that might develop under the foundation when the
water level isin the range of El. 1598.

Our conclusion on this matter is that the original analysis would not be acceptable in amodern
regulatory environment.
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8.2.2 New Overturning Analysiswith No Under mining

The forces considered for this analysis areillustrated below on Figure 8-8 with the results shown
on Figure 8-9. Theresultsindicate that the Wall was stable against overturning for all practical
purposes under the given water level and so long as no undermining had devel oped.

' Drag Force

Water Pressure

N
/ Ws Uplift Pressure

FIGURE 8-8

OVERTURNING ANALYSISWITH NO UNDERMINING
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Factor of Safety vs. Water Elevation
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FIGURE 8-9

OVERTURNING STABILITY ANALYSISRESULTS
8.2.3 New Sliding Analysiswith No Under mining
The forces considered for the dliding analysis are illustrated below on Figure 8-10 with the

results shown on Figure 8-11. The resultsindicate that the Wall was stable against diding for all
practical purposes under the given water level and so long as no undermining had devel oped.
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FIGURE 8-10

SLIDING ANALYSISWITH NO UNDERMINING

Factor of Safety vs. Water Elevation
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FIGURE 8-11

SLIDING ANALYSISRESULTS
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8.24 New Overturning Analysiswith Under mining

The forces considered for this analysis are illustrated below on Figure 8-12 with the results
shown onFigure8-13. Theresultsindicate that the Wall becomes unstable when undercutting
penetrates about three feet under the wall. Thisanalysisistwo dimensional, and therefore for the
Wall segment to actually fail, the entire 60 feet long Wall Segment would have to be undermined
to this degree. We observe that Wall Segment 72 shown on Figure 8-5 was probably “saved” by
three dimensional action and the Wall Segments 44 to 56 shown on Figure 8-6 were not
undermined enough to result in an unstable situation.

e —
Drag Force

Water Pressure

WT
FW‘I
Fa Fy : Undermine
/ Ws Uplift Pressure wae
~
FIGURE 8-12

NEW OVERTURNING ANALYSISWITH UNDERMINING
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Factor of Safety vs. Undercut distance
F§=1.0,
Undercut = 3.14 ft
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FIGURE 8-13
OVERTURNING RESULTSWITH UNDERMINING
8.25 New Sliding Analysiswith Undermining
The forces considered for this analysis are illustrated are the same as shown on Figure 8-10 for
the overturning analysis and the results shown below on Figure 8-14. The results indicate that

the Wall will probably fail first due to overturning (before sliding) when undermining occurs,
primarily because of the upstream sloping base.
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Factor of Safety vs. Undercut Distance

\

T

175

g
o
o

Factor of Safety
=
N
(53]

1.00

0.75 T T T T T T
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*Passive Pressure is reduced as undercut distance increases. undercut (ft)| Pressure
reduction for each undercut distance is shown in the table to the right. 3 50
2 70
1 90
0 100
FIGURE 8-14

SLIDING RESULTSWITH UNDERMINING

8.2.6 Structural Analysis Check of Concrete and Reinforcing Steel

Our check of the concrete stresses and reinforcing steel indicate that the Wall was adequately
reinforced and that the thickness of the concrete compressing the stem and two bases is adequate.

8.2.7 Summary of Analysis Resultsfor the Parapet Wall

Based on our analysis, we conclude the following:

The Parapet Wall is stable for all practical purposes at
water levelsin the Upper Reservoir as high as El. 1599
so long as no undermining occurs.

The Parapet Wall is marginally stable to unstable at
water levelsin the Upper Reservoir at El. 1599 when
undercutting penetrates about three feet. Three
dimensional effects, i.e., support from non-undermined
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portions of aWall Segment, tend to stabilize individual
Wall Segments asis the case with Wall Segment 72.

The Wall is adequately designed with respect concrete
thickness and reinforcing steel.

In terms of the Root Cause Analysis, as defined in Section 5.0, the failure of the Parapet Wall
may have been a secondary contributing cause to the Event. RIZZO isunable to determine if the
Parapet Wall failed before the Rockfill Dike or during the failure of the Rockfill Dike. Thereis
inadequate evidence to assess the timing of Parapet Wall Failure. If the Parapet Wall failed
before the Rockfill Dike, it could have (1) led to a much more rapid rise in the phreatic surface
and associated pore pressures at the Dike/foundation interface and (2) led to the surface transport
of rockfill on the downstream face, thereby diminishing the effective stress at the
Dike/foundation interface. If the Parapet Wall failed during the failure of the Rockfill Dike, then
it was not a contributing cause.

8.3 SEEPAGE ANALYSIS

The second step in our overall analysis effort was to develop an understanding of the seepage
behavior and pore pressure distribution in the Rockfill Dike, especially at the critical
Dike/foundation interface. This effort was undertaken with a computerized seepage analysis
using the two dimensional program, SEEP2D (Boss International and Brigham Y oung
University, 1999). We first established a“best estimate” set of properties for the Dike in the area
of the Breach and the postul ated a range of variability for these parameters. The range of
properties was based on measurement and observation of propertiesin the field, judgment and
values appearing in the literature.

We also used a model appropriate for the Breach Area; specifically we accounted for the
increased depth to rock and the initial grout curtain, aswell as the second grout curtain at this
section. We also adjusted the boundary conditions of the model to account for the drainage ditch
at the downstream toe of the Dike.

8.3.1 Property Calibration Runs

To check the validity and compatibility of our estimate of the basic relative permeability values,
we performed a set of calibration runs. We estimated the seepage from the Upper Reservoir
without the HDPE Liner (installed in 2004) and compared our results with estimated seepage
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reported by AmerenUE. We then adjusted slightly our estimates to affect a reasonable match
between our estimate of seepage and AmerenUE’ svalues. The model used for this calibration
model is shown on Figure 8-15 and the phreatic surface and flow net is shown on Figure 8-16.
Calculations are provided in Appendix F.

Model Calibrated for 40 cfs — No HDPE Liner

Head F
PR Conerete Face k = 10-%m/sec

il e = A0
Rockfill. k = 10~ cm/sec 6" Thick gravel layer and/or

Interface, k=16 x 101 emisec
Exit Face

/s 2" thick soll layer
/5 10 thick Soil layer,

k=16:10"emisec

Grout Curtaing, k = 10" emifsec
Bedrock, k= 10*cmisec Mixed A-S-C, k = 10%cmisec

FIGURE 8-15

CALIBRATION MODEL

A comment pertaining to the calibration runsisthat the overall calibration check is somewhat
crude asthe accuracy of the leakage rate available islimited. Specifically, the available |leakage
rates are such that one cannot distinguish water lost through the Dike from that lost through the
bottom of the Upper Reservoir bottom or that lost through evaporation. Also, the configuration
of the Dike varies significantly around the perimeter of the Upper Reservoir, whereas we
considered only the geometry at the Breach Area as being reasonably indicative of all cross
sections. Therefore, we are able to conclude only that our chosen parameters are in the proper
range, but parametric runs as described below are necessary to fully understand the range of
possible behavior of the Dike.
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HODPE Liner 10-% cmisac

Rockfill 102 cm/sec

Total Flow rate =

525.680 (R=/d)(ft)

—_

- i -
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-—

- \ =
A \ — S -

FIGURE 8-16

FLOW NET FOR CALIBRATION MODEL

A secondary observation with this model is that there are certain zones in the Dike, such as at the
upstream toe, where the gradient may have been relatively high. Thiswould suggest the
possibility of fines transport within the Dike itself, i.e., movement of fines from the toe area
toward the center of the Dike. Except for the small zone at the extreme downstream toe, the
gradients were too low to move the fines through the Dike entirely. This observation is
consistent with reports by AmerenUE that major quantities of fines were not observed in the
Pump-Back Pond at the southeast corner of the Upper Reservoir, the sink for the toe drainage
ditch. RIZZO personnel observed only minor quantities of fines buildup in portions of the
drainage ditch, e.g., in the reach below Parapet Wall Segment 72.

Therefore, while some fines transport and subsequent clogging of the filters near to the upstream
toe of the embankment would have theoretically been possible, clogging of thefiltersin this area
would have not had a substantial impact on the phreatic surface at the downstream toe.
Additionally, the gradients shown in Figure 8-16 and field observations suggest that clogging of
the filters under the downstream slope of the Dam did not occur.

8.3.2 Best Estimate and Parametric Runs

After calibrating the model shown on Figure 8-15 and adding the HDPE Liner on the upstream
face of the Dike, we performed a series of seepage analysisruns on the “Best Estimate” Model
developed on Figure 8-15 and modified to include the HDPE/LDPE Liner as shown inFigure 8-
17. Theresulting flow net shown on Figure 8-18 indicates that the Liner significantly changed
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the flow regime, dropping the phrestic surface to the level of the interface. This change
increases the factor of safety for wedge failures along the interface significantly.

- HDPE Liner Used

— Head F
| |sa €adFEC®  oncrete Face and HDPE/LDPE

F Gravel Liner, k = 10" cm/sec

5 = 4A B" Thick gravel layer, and/or
ey RN, k210 M Interface k = 1.6¢10 ‘cmisec
 Meonasc Exit Face A

U/s 2" soil layer
k =10 cmis

e

D/S 10 thick Soil layer, k=
1.8x10 emisee

Grout Curtains, k = 10" 'em/sec
Bedrock, k = 10*cm/sec Mixed A-8-C, k = 10%cmisec

FIGURE 8-17

BEST ESTIMATE SEEPAGE MODEL WITH LINER

HDPE Liner 10" cmisec
Rockfill 10 em/lsec
Interface1.6 x 10-' cmi/sec _.,»/

Total Flow rate =

7 .
25.901 (ft¥/d)(ft) A S ,n"/ : |
= \ - - .*""‘rj -‘f f
_p3t N SCONSKSTEHELAA X AN
N b i
\\““-\__ H-_H____H—_Fd_ﬂ__ﬂ-”'xf #_fd’_,.-
S T L) e
FIGURE 8-18

FLOW NET FOR BEST ESTIMATE SEEPAGE MODEL WITH LINER
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The range of properties used in the parametric analysis of the seepage is summarized in
Table 8-1. Itisnoted that we ran variations of the Best Estimate Model for those parameters
determined to be significant with respect to overall seepage and overall flow net configuration.

TABLE 8-1

RANGE OF SEEPAGE ANALYSISPARAMETRIC RUNS

ROCKFILL | SOIL | FILTER
CASE NO. K k k OBSERVATIONS
(cm/sec) (cm/sec) | (cm/sec)
1- BEST 1X 10-3 1.6X10-1 | 1.6X10-1 | NO PORE PRESSURE
ESTIMATE AT INTERFACE
2 1 X 10-2 1.6X107 | 1.6X10*" | No pore pressure at interface
3 1X 10 1.6X107 | 1.6X10*" | No pore pressure at interface
4 1X 10° | 1.6X107|1.6X10? | Noporepressureat interface
5 1X 10° |1.6X10"|1.6X10*| Porepressureatinterface
6 1X 10° |1.0X10°|1.6X10°| Porepressureatinterface

Note: 1. See Appendix F for related Calculations.

Not all parameters comprising the model are shown on the table as several were assessed
interactively on the computer screen as not being significant. For example, we varied the
permeability of the Two Grout Curtains and the Asphalt Pavement, but no significant changein
the results was observed. Although our modeling shows that the assumed permeabilities of both
the Grout Curtain and the Asphalt Pavement have a neglible effect on the phreatic surface, slight
changesin pore pressures at the Dike/foundation interface can be expected, depending on the
effectivness of the Grout Curtains and the Asphalt Pavement..

Additionally, R1ZZO observed that the initial grout curtain installed during the original
construction had to be reinforced along its origina alignment and then supplemented with an
additional curtain further upstream. RIZZO also observed that theinitial curtain, aswell asthe
supplemental curtain, may have been inadequately designed, particularly with respect to depth.
Similarly, RIZZO observed that the asphalt pavement in the vicinity of the Breach Areahad to
be repaired at least once after the original construction.
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The results of these parametric runs presented in Table 8-1 indicate that the permeability of the
soil at the Dike/foundation interface and the Filters has a significant effect on the pore flow net
and the pore pressure on the interface. To illustrate this point, we show below on Figure 8-19
the flow net for Case 6 where the permeability of these two zonesis postulated to be in the range
of 1x 10“ cm/sec. The results also indicate that with the HDPE Liner in place, the permeability
of therock fill comprising the Dike is less important for the range of parameters that we
considered.

HDPE Liner 10-"' cmi/sec
Rockfill 10 cmisec
Interface 1.6 x 10 cm/sec

Total Flow rate =

20,547 (PO gy ) S
ey = 12 T _1--‘ '\_\_\‘-\-\- _F_.-d Y F | I
..,.«—H_"'__r-:-:-‘"_ '.ql'.. T — TR =, il __"'.-. _/"'I‘ _,'-"lf |I
E:_-'_'-..r-.?'-._r .\..' . ) i ' == o .--"'-‘- S lI|
| 8 et =3 s

FIGURE 8-19

FLOW NET FOR PARAMETRIC CASE 5

(KinTeERFACE <K ROCKFILL)
8.4 FORENSIC STABILITY ANALYSIS

We have assessed the stability of the Rockfill Dike focusing on the geometry of the Breach Area
and considering three Conditions:

Condition A Best Estimate Seepage conditions with Best Estimate soil and rock
properties prior to installation of the geosynthetic liner as described in
Section 8.3.1 where our calibration efforts are described. Stability
Analyses worksheets are provided in Appendix F for all Conditions.

Condition B Best Estimate Seepage with Best Estimate soil and rock properties plus a
large number of parametric runs to gage sensitivity (after the installation
of the geosynthetic liner). Seepage runs are described in Section 8.3.2.
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This Condition B isindicative of conditions just prior to the December
14, 2005 Event.

Condition C Best Estimate Seepage with Best Estimate soil and rock properties plus a
number of parametric runs to gage sensitivity (after the installation of the
geosynthetic liner) and during the overtopping event of December 14,
2006.

The computer program GSTABL 7 was used to perform all Stability analysis (Gregory, 2003).
84.1 Phreatic Surface & Pore Pressure Conditionsfor Stability Analysis

For Condition A as defined above, we used the phreatic surface shown on Figure 8-16 whereby
most of the Dike is saturated.

For Condition B as defined above, we used a variety of phreatic surfacesin a parametric manner
to capture the range of possible seepage postulated conditions as listed on Table 8-1.

For Condition C, we interactively varied the phreatic surface with a series of runs starting with
the Condition B case until the routine located a phreatic surface where the factor of safety
against failure approached unity. Asacheck on the validity of the postul ated failure surface
from atiming perspective, we developed an infiltration model for the overtopping flow rates
estimated for the Breach Area. This model with the results shown below on Figure 8-20 shows
our estimate of how the phreatic surface rose versus time during overtopping on December 14,
2005, and the estimated time when instability occurred - initially at the downstream toe and
progressing up the downstream slope.
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FIGURE 8-20

DC = Deep Circular
TC = Toe Circular

HEIGHT OF SATURATION ABOVE BEDROCK VERSUSTIME

8.4.2

Soil and Rock Properties

Figure 8-21 below indicates the properties selected for the Best Estimate Cases and the

parametric runs and Table 8-2 describes the basis for selection
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FIGURE 8-21

SLOPE STABILITY ANALYSIS-MATERIAL PROPERTIES
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TABLE 8-2

SUMMARY OF SOIL AND ROCK PROPERTIES

MATERIAL L OWER BEsT UPPER BAsls
BounD ESTIMATE BounD
Foundation Soil c=0 c=0 c=0 Field Observations, Lab Tests
at toe f =30° f =33° f =35° & Cadlibration with Condition
A
Filter Materid c=0 c=0 c=0 Field Observations &
f =30° f =33° f =35° Calibration with Condition A
Bedrock c=3000psf |c=3000psf | c=3000psf | Judgment
f =50° f =50° f =50° No parametrics
Concrete Face c=3000psf | c=3000psf | c=3000psf | Judgment
f =50° f =50° f =50° No parametrics
Rockfill c =0 psf c=0 c=0 LB — suggested by BOC
f =41° f =43° f =45° BE — Back calculated from
surface dides
UB — Back calculated from
Breach Area
8.4.3 Results of Stability Analysis

A summary of the stability analysis for the three above Conditionsis provided below in three
corresponding Tables. Details of each of the computer runs for the Best Estimate Properties are
shown on Figures 8-22 to 8-33. Detailsfor all of the computer runs are available in Appendix

TABLE 8-3
SUMMARY OF STABILITY ANALYSIS
FACTORSOF SAFETY
CONDITION A
L OWER BEsT UPPER
PHREATIC BOUND ESTIMATE BOuND FAILURE TYPE
SURFACE PROPERTIES | PROPERTIES | PROPERTIES
Condition A 0.92 1.01 1.09 Deep Wedge - Fig. 8-22
Condition A 0.98 1.05 1.12 Deep Circle—Fig. 8-23
Condition A 1.06 1.15 1.13 Toe Wedge—Fig. 8-24
Condition A 111 1.13 121 ToeCircle—Fig. 8-25
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It is noted that significant pore pressure probably existed at the Dike/foundation interface before
the HDPE liner wasinstalled. The results presented in Table 8-3 indicate that the Rockfill Dike
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prior to installation of the geosynthetic liner in the Breach Areawas marginally stable where the
material properties were in the range of selected Lower Bounds.

We note that the elevated phreatic surface analyzed in Condition A represents estimated seepage
conditions for the Rockfill Dike prior to installation of the synthetic liner. The assumed phreatic
surface was estimated based on available information and data pertaining to the permeability of
the various zones and was back-calculated to match the pre-liner recorded seepage quantities.
Although an increase in pore pressure resulting from leaks through cracks in the concrete face
would serve to diminish the factor of safety against stability failure of the Rockfill Dike (as
shown in Table 8-3), the placement of the synthetic liner in the fall of 2004 diminished, and
probably eliminated, the leaks through the concrete face. Thus, any pore pressure attributed to
leakage through the concrete face prior to the installation of the synthetic liner would likely have
been dissipating at the time of the Event in December 2005. It is our opinion that the actual
phreatic surface just prior to the Event was somewhere between that shown on Figure 8-16 (pre-
liner) and Figure 8-18 (post-liner).

If any residual pore pressures remained, then leaks through cracks or expansion jointsin the
concrete on the upstream face of the Rockfill Dike may have been a secondary contributing
cause of the Event from the perspective that |eaks through cracks or expansion joints could have
caused increased pore pressures at the Dike/foundation interface. However, we are unable to
determine if these pore pressures had fully drained prior to the event.
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TABLE 8-4

SUMMARY OF STABILITY ANALYSIS

FACTORSOF SAFETY
CONDITION B
L OWER BEsT UPPER

PHREATIC BOuUND ESTIMATE BOuND FAILURE TYPE

SURFACE | PROPERTIES | PROPERTIES | PROPERTIES
Condition B 1.24 1.35 1.45 Deep Wedge — Fig. 8-26
Condition B 1.23 1.33 1.42 Deep Circle—Fig. 8-27
Condition B 1.10 121 1.30 Toe Wedge—Fig. 8-28
Condition B 111 1.23 1.32 Toe Circle—Fig. 8-29

The results presented in Table 8-4 indicate that the Rockfill Dike after installation of the
geosynthetic liner in the Breach Arearesulted in aslightly higher factor of safety. However, the
results indicated that the section would still not meet FERC criteriafor stability under static
conditions for maximum storage pool (i.e., FS=1.5) (FERC, 1991). Although dynamic analyses
have not been run, past experience suggests a high probability of failure under significant
earthquake loading. The addition of a pseudo-static earthquake coefficient would result in a
lower factor of safety approaching one. A pseudo static factor less than about 1.3 resultsin some
amount of permanent deformation which increases exponentialy with successively lower factors
of safety.
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FIGURE 8-26

DEEP WEDGE FAILURE —CONDITION B
(BEST ESTIMATE PROPERTIEYS)
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DEEP CIRCLE FAILURE-CONDITION B
(BEST ESTIMATE PROPERTIEYS)

Tauim Saaik Panel 55wl HDPE Lindr Bieck Falure of Tow
WA e ek Sy e ) o P B Lo SR

(AFEEFAidw

o I i i i i | .
EALE ] MR Ut SRl ims WEE LLE ] (T BN A Tita
GRTABLT %2 Fmbe= 1200
..m:jm)’ Salwby Facnin v Caboatate] Uy The Snpimted das Mafled

FIGURE 8-28

TOE WEDGE FAILURE - CONDITION B
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Panel 35 HDPE Toe Circular Failure Best Estimate
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FIGURE 8-29

TOE CIRCLE FAILURE - CONDITION B
(BEST ESTIMATE PROPERTIEYS)

TABLE 8-5

SUMMARY OF STABILITY ANALYSIS
HEIGHT OF PHREATIC SURFACE ABOVE BEDROCK
TO PRODUCE FACTOR OF SAFETY OF 1.0

CONDITION C
E%r :\AMEA(IED L OWER BEsT UPPER
FAILURE (BE BOUND ESTIMATE BOUND FAILURE TYPE
PROPERTIES) PROPERTIES | PROPERTIES | PROPERTIES
. Intermediate to Deep
18 min 31 ft 34 ft 37 ft Wedge - Fig. 8-30
. Deep Circle (Infinite
23 min 37 ft 42 ft 47 ft Slope) — Fig. 831
11 min 12 ft 16 ft 17 ft Toe Wedge - Fig. 8-32
12 min 14 ft 16 ft 17 ft Toe Circle—Fig. 8-33
Notes:

1. The height of the phreatic surface is measured above the bedrock directly at the downstream toe.
2. The Estimated Time of Failure is our estimate when the Failure Type occurred. See Figure 8-20.
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Thefirst line of Table 8-5 indicates that RIZZO estimates that it would take about 18 minutes for
the phreatic surface to increase to 34 feet above the bedrock. With the phreatic surface at this
level, an intermediate to deep wedge type failure would have a factor of safety of one. Based on
the analyses presented, it isRIZZO'’ s opinion that the failure began at the toe (with either a
wedge or circular failure). Table 8-5 indicates that the toe failure condition reached a factor of
safety of one when the phreatic surface was in the range of 12 feet to 17 feet above the bedrock.
This occurred in the range of 10 to 13 minutes after the Upper Reservoir level reached El. 1597.
The results also indicate that while failure began at the toe, probably exacerbated by run off
down the slope, it rapidly progressed up slope within minutes.

The increase in phreatic surface within the Dike on the day of the Event is directly attributed to
the overtopping flow. RIZZO is unable to measure or calculate with precision the level and
shape of the phreatic surface just prior to the overtopping. The analyses summarized in Table 8-
5 assumed that theinitia (pre-overtopping) phreatic surface was about five feet above bedrock.
In terms of the Barriers presented in Section 5.0, this assumed initial phreatic surface might have
been elevated by an ineffective Grout Curtain, Asphalt Pavement, or the Foundation Filters.
Performance of the Foundation Filters was discussed and dismissed in Section 8.3.1 as non-
causal. If, on the other hand, the Grout Curtains and/or Asphaltic Pavement were ineffective and
causing leakage through or seepage under, either could have impacted the level or the shape of
the pore pressure distribution at the Dike/foundation interface. An increase in pore pressure
would have diminished the (pre-overtopping) factor of safety against stability failure of the
Rockfill Dike and possibly result in afaster time to failure as compared to the times presented in
Table 8-5. However, it isRIZZO’s opinion that neither the Grout Curtains nor the Asphalt
Pavement played a substantial role in the Event and that, at best, an ineffective Grout Curtain or
an ineffective Asphalt Pavement may have been a secondary contributing cause.
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FIGURE 8-30

INTERMEDIATE TO DEEP WEDGE FAILURE —CONDIITON C
(BEST ESTIMATE PROPERTIEYS)

Taum Sauk / Tri. Low Water, 43-33 Deep Circular Failure
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FIGURE 8-31

DEEP CIRCLE (INFINITE SLOPE) FAILURE —CONDITION C
(BEST ESTIMATE PROPERTIEYS)
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85 PREVIOUS SLOPE STABILITY ANALYSIS

Slope stability of the Upper Reservoir Dike was previously evaluated (by others) as part of the
normal dam safety and inspection process. These analyses were included in the latest Part 12
Report (MWH, 2003) and the results showed that the Dike apparently met current dam safety
requirements as per the FERC guidelines. In this section, we compare and contrast the existing
analysis as compared to the post-incident analysis summarized in Section 8.4.

Based on our review of these analyses, RIZZO has the following comments:

Phreatic Surface: Inthe previous analysis, it was assumed that no pore pressure existsin the
rockfill (assumed adry slope condition). While thisis often consistent with a concrete faced
rockfill dam, it is not appropriate for the Dike at Taum Sauk. The high percentage of fines
within arockfill has the effect of increasing pore pressures within adam or dike. Substantial
seepage was flowing through the Taum Sauk Dike with estimates of seepage ranging from 10 to
40 cfs with an average of about 20 cfs. When this seepage flow encountered fines, increased
pore pressure resulted.

Utilizing the finite element-based SEEP2D modeling program and measured seepage quantities,
R1ZZ0O developed phreatic surfaces consistent with the concrete-lined and the HDPE-lined
upstream face. These phreatic surfaces were used to calculate slope stability factors of safety. It
is noted that the phreatic surface has an impact on the factor of safety (as the phreatic surface
increases, the FS decreases).

Soil Properties. Inthe previous analysis, one type of material is assumed for the entire Rockfill
Dike having shear strength properties of friction angle (f ) equal to 45 degrees with no cohesion.
However, the original design drawings show three distinct soil layers within the downstream
slope of the embankment; namely, rockfill, afilter layer, and unexcavated soil. RIZZO has
performed a parametric investigation of the slope stability analyses assuming lower bound, best
estimate, and upper bound materia properties for each of these layers. Those material properties
arelisted in Table 8-2. The estimated material property values were back-cal culated from the
failed slopes and confirmed with laboratory test results. The soil and filter layers located atop
the weathered rock have much lower strength valuesin comparison to rockfill material. This
foundation layer critically governs the factor of safety for slope stability. Lower shear strength
values for the foundation material yields lower factors of safety.
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Wedge versus Circular Failures: The original analyses assumed uniform strength properties
for the embankment and the foundation. In this case, circular failure surfaces control. However,
in the case analyzed herein, the foundation layer is significantly weaker than the overlying
embankment. In this case, awedge failure (with aresulting lower factor of safety) governsthe
slope stability analysis.

Actual Site Conditions: Inclusion of actual site conditions, as stated above, will result in a
lower factor of safety as compared to the original analyses.

Independent Check: Asacheck, RIZZO has independently performed the slope stability
analyses using the same geometry and strength properties as used in the original stability
calculations—not the properties that RIZZO interpretsto be appropriate. The results are
presented on Figure 8-34. These results show afactor of safety of 1.5 as reported in the original
calculations prepared by the original designer.
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CHECK —ORIGINAL STABILITY ANALYSIS
FACTOR OF SAFETY EQUAL 1.5
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