

Assessing Flexibility on Future Power Systems Case Studies for CAISO

Erik Ela, Qin Wang, Clyde Loutan FERC Software Conference Washington, DC June 26, 2019

Three Pillars of an Adequate Supply Fleet

What is flexibility?

The ability to adjust output to meet and adapt to the expected and unexpected changes of the system over different time horizons ■ Ramp Rate (MW/min) ↑

- Power Range (MW) \bigstar and Min Gen \checkmark and forbidden zones \checkmark
- Start-up time (Hours)
- Minimum run/down times (Hours) \checkmark
- Ability to sustain output (MWh)↑
- Frequency to be called (Calls per year) ↑
- Ability to change fuel/source \uparrow
- Ability to deliver energy to where it is needed $m{\uparrow}$

Mechanisms to Ensure Flexibility Provided Reliably and **Cost-Effectively**

www.epri.com

The Flexibility Challenge

Problem 1: The system fleet is flexible, but resources do not have the incentive to hold back energy to provide flexibility

Solution1

Problem 2: The system fleet is flexible, but operational procedures are not extracting this flexible

Problem 3: The system fleet is not sufficiently flexible, or not anticipated to be in the future

Solution 2

EPCI ELECTRIC POWER RESEARCH INSTITUTE

Solution 3

Flexibility Assessment Study: Installed Flexibility on the CAISO

Disclaimers: 1. Not speaking on behalf of CAISO. 2. Study and descriptions based on previous FRAC-MOO process, CAISO has since proposed changes to process that may not be captured

CAISO Flexible Resource Adequacy Criteria & Must Offer Obligation (FRAC MOO)

All resources that contribute to the EFC, must offer flexibly (i.e., not self-schedule) in the energy market.

Process would be analogous to Northeastern ISOs including a flexible capacity "constraint" in the capacity market to ensure sufficient flexible capacity is built for each seasonal auction.

California Flexible Capacity Procurement

- Flexible capacity need : Max 3-hour ramp rate per month + contingency reserve
- Three types:
 - Base flexibility
 - Peak flexibility
 - Super-peak flexibility
- Allocation to system flexibility capacity needs allocated to LSEs based on contribution to 3-hour net load ramp
- Effective Flexible Capacity Calculation:

Sum of each resources

Min { 3 hour ramp, output range, output after starting within hour and half}

Project Goals

- Provide additional analytics and tools for FRAC-MOO process
- Understand what discrepancies exist and why
- Phase 1: Flexible capacity needs
 - Benchmarking results with software tool InFLEXion
 - Percentile analysis and additional horizons
- Phase 2: Flexibility assessment
 - Why does the CAISO have less flexibility in operations than planned?
 - Utilize EPRI Installed Flexibility (IFLEX) calculation method
 - Sensitivities for greater understanding

Flexible capacity, why it may not be available?

What are the differences between effective flexible capacity (EFC) determined by the ISO and flexibility available in real-time?

- Meeting net load
 - EFC does not consider whether it is feasible for all EFC to be provided during every interval
 - Example: units online to provide EFC may cause over-generation during min net load periods

Horizon focus

- 3 hour horizon may not guarantee CPS1
- Forecast error and commitment constraints
 - Some EFC units with flexibility do not get committed day-ahead and are not available to provide flexibility in realtime

Transmission constraints

- EFC does not consider whether flexibility can be delivered across the network during constrained periods
- Forced outages or maintenance periods
 - EFC does not consider forced outage rates of resources like ELCC does

Other issues

- Data input issues
- Technology specific calculations

Study Focus

Sensitivity

Developing Flexibility Assessment Paradigm

Available	Deliverable	Installed
Available Flexibility	Deliverable Flexibility	Installed Flexibility
 Goal: What is the likely flexibility that a system can provide while meeting net load? 	Goal: How much of the available flexibility can be delivered to where it is needed?	 Goal: What is the maximum flexibility that a system can provide while meeting net load?
 AFLEX can be calculated with Inflexion and Production Cost Models 	 DFLEX can be calculated with an Optimal Power Flow 	 IFLEX can be calculated with production cost models
 Outcome: Identifies flexibility available if systems operated as is 	 Outcome: Identifies usable flexibility 	 Outcome: Identifies hard limitations to system technical flexibility capability

Key Features of EPRI IFLEX Method

- These results show the absolute maximum *feasible* flexibility, IFLEX, of the fleet
 - Analogous to ICAP. Dependent on system conditions, independent on operational decisions
 - Primary difference with EFC calculation, IFLEX is feasible (through simulation model)
- At noon, a certain amount of units must be off to accommodate solar, many of these resources cannot contribute to the sunset evening ramp
 - Min down time, start-up times, etc.
- Some very uneconomic commitment and dispatch solutions may be present feasible but maybe not likely?
- Only new builds, retrofits to existing plants, or change to how much interchange is allowed can increase flexibility – <u>no operational decisions (e.g.,</u> reserve requirements) will increase amount of installed flexibility

Modify the production cost model in the commercial tools to calculate IFLEX

Set the generation cost *c* and reserve cost *r* to 0.

Flex penalty is smaller than the Load Violation Penalty. • $Minimize\{\sum_{i} c_{i}P_{i} + r_{i}Flexibility_{i} + 10 * Penalty^{Flex} + 5000 * Penalty^{Load}\}$

s.t.

$$\sum_{i} P_{i} + Penalty^{Load \ violation} = \text{Load}$$
Load balance should be satisfied

 $\lambda P_i^{Forecast} \leq P_i \leq P_i^{Forecast}$ for all VERs No curtailment in base case λ =1

 \sum Flexibility_i + Penalty^{FLEX} \geq Reserve Requirement

Reserve requirement is a relative large number, e.g. the maximum load of the simulation horizon

 $P_i + Flexibility_i \leq P_i^{\max}$, for all generator i $P_i = P_i^{\text{max}}$ for nondispatchable units $0 \le Flexibility_i \le Ramp_i \times Horizon$, for dispatchable unit i All other constraints such as minimum on/off time; hot/cold start up time; etc.

Phase 2 Study Scenarios

- 2016 Base Case: How much feasible flexibility within the CAISO fleet compared to EFC and compared to 3-hour ramps
- 2020 Base Case: Analysis of future flexibility from fleet using CAISO scaling methods
- Sensitivity 1: Evaluate flexibility at different horizons to see whether horizons other than 3-hour have challenges
- Sensitivity 2: Evaluate how much curtailment of VER can increase the amount of feasible flexibility
- Sensitivity 3: Evaluate how much provision of flexibility if only RA resources provide at RA capacity contributions

Simulation results

2020 3-hr ramp + CR v.s. 3-hr IFLEX

Feasible maximum flexibility is often much less than ISO-calculated EFC Still greater than 3 hour ramp needs.

www.epri.com

When are the greatest flexibility challenges

IFLEX significantly reduced in summer afternoon, after being consumed by ramps. However, greatest risk is earlier when the ramps are occurring

Flexibility Contribution

- Most resources provide either maximum flexibility (EFC) or no flexibility
 - Providing no flexibility means supplying maximum power or offline and not able to startup (SU time or min down time)
- The software may choose what units do at random
 - Method should not be used for individual flexibility contribution

Summary and Conclusions

- Flexible capacity can be calculated with a utility/ISO's existing production cost simulation tool using simple modifications
- Recommend using IFLEX method for future system-wide flexible capacity planning assessments
 - Units typically provide maximum flexibility or no flexibility depending on hour and constraints
 - Note: It should not be used for individual resource flexible capacity contributions (without enhancements)
- Calculated flexible capacity on average about 20% lower, but up to 80% lower than EFC currently calculated by CAISO
 - Still generally higher than ramp needs for 2020
- Flexibility is significantly reduced in order to **meet net load conditions at beginning** of ramps
- Lowest IFLEX not the same as highest flex risk (Hour 18 vs Hour 15)
 - Spring time challenges not observed as much Maximum flexibility vs. economic flexibility
- 1hr and 3hr horizon flexibility are almost **identical** using this method
 - Because 3hr ramps are larger, the choice of 3-hour horizon seems to be good choice for critical horizon
 - Recommend the ISO continue to look at other horizons deficiencies mean different things in different horizons
- Curtailment does not provide significant increase to average flexibility across the year but may provide significant increase in select time periods
 - **Limited study** on curtailment curtailment to provide flexibility from VER can be much greater
- If only RA resources providing flexibility, true deficiencies may be seen in 2020

Together...Shaping the Future of Electricity

