HIPPO – A Concurrent Optimizer for Solving Day-ahead Security Constrained Unit Commitment Problem

FERC Technical Conference June 26, 2019

HIPPO Background

₿

Funded by ARPA-E, 11/2016 – 1/2020.

Problem – Day-ahead security constrained unit commitment problem

Challenge - Slow solution times lead to inefficient cost, reduced reliability and slow adaptation of new market designs.

Solution – A solution framework based on parallel and concurrent optimization.

Goal - 10+ speedup.

Day-ahead Security Constrained Unit Commitment (SCUC) + SFT

Load-generation balance

Generator/resource operational requirements

Reserve requirements.

Security constraints

Simultaneous feasibility test.

<u>77</u> 8	
$\delta_{ist} \leq \sum_{t'=T_i^s}^{\overline{T}_i^t} w_{it-t'} \;\; orall i \in G, t \in [T_i^s, T], s \in S \setminus \{cold\}$	(A.8)
$\sum_{s \in S} \delta_{ist} = v_{it} \forall i \in G, t \in T$	(A.9)
$\sum_{t'=t-\underline{TU_i}}^t v_{it'} \leq u_{it} \ t = [\underline{TU_i}, T], \forall i \in G$	(A.10)
$\sum_{t'=t-\underline{TD}_i}^{t} w_{it'} \le 1 - u_{it} t = [\underline{TD}_i, T], \forall i \in G$	(A.11)
$v_{it} \leq \sum_{i'=t}^{t+\overline{TU}_i} w_{it'} \ t = [0, T - \overline{TU}_i], \forall i \in G$	(A.12)
$u_{it} - u_{it-1} = v_{it} - w_{it} \forall i \in G, t \in T$	(A.13)
$q_{it} + rr_{it} \leq \overline{P}_{it}u_{it} + (\overline{PR}_{it} - \overline{P}_{it})ur_{it} \forall i \in G_1, t \in T$	(A.14)
$q_{it} - rr_{it} \geq \underline{P}_{it}u_{it} + (\underline{PR}_{it} - \underline{P}_{it})ur_{it} \forall i \in G_1, t \in T$	(A.15)
$q_{it} - q_{it-1} \le (RR_{it} + \underline{P}_{it-1})u_{it} - \underline{P}_{it-1}u_{it-1} + (\underline{P}_{it} - \underline{P}_{it-1} - 0.5RR_{it})v_{it}$	
$\forall i \in G, t \in T \setminus \{0\}$	(A.16)
$-q_{it} + q_{it-1} \leq -\underline{P}_{it}u_{it} + (RR_{it} + \underline{P}_t)u_{it-1} + (\overline{P}_{it-1} - RR_{it} - \underline{P}_{it})w_{it}$	
$\forall i \in G, t \in T \setminus \{0\}$	(A.17)
$\sum_{t \in \{0, \cdots, 23\}} q_{it} \leq TP_i, \sum_{t \in \{24, \cdots, 35\}} q_{it} \leq TP_i \forall i \in G$	(A.18)
$\sum v_{it} \leq TS_i, \sum v_{it} \leq TS_i \ \forall i \in G$	(A.19)

tel 94 ... 35

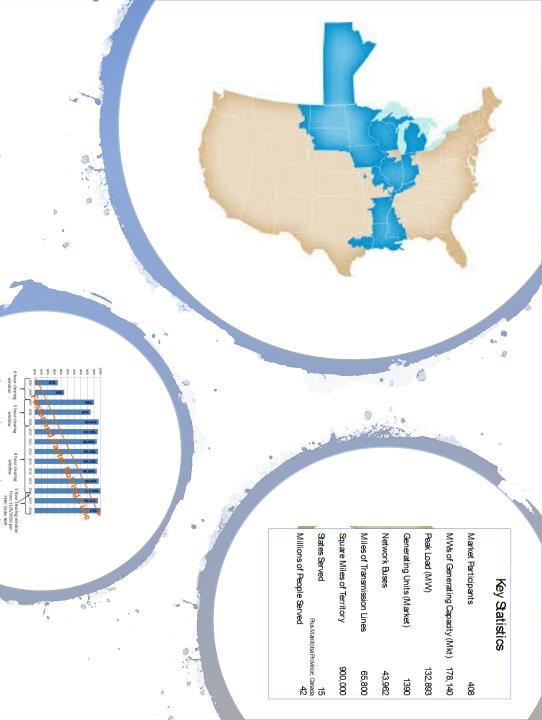
$\delta_{ist} \leq \sum_{s=-\infty}^{\overline{T}_{i}^{s}} w_{it-t}$ $\forall i \in G, t \in [T_{i}^{s}, T], s \in S \setminus \{cold\}$	(A.8)
and T and the control of the life of the set	(110)
$\sum_{s \in S} \delta_{ist} = v_{it} \forall i \in G, t \in T$	(A.9)
$\sum_{t'=1-\underline{TU}_{t}}^{t} v_{tt'} \le u_{it} t = \underline{TU}_{i}, T , \forall i \in G$	(A.10)
$\sum_{t'=t-TD_t}^{t} w_{it'} \le 1 - u_{it} t = \underline{TD}_t, T , \forall i \in G$	(A.11)
$v_{it} \leq \sum_{u=x}^{t+\overline{TU}_i} w_{it}$ $t = [0, T - \overline{TU}_i], \forall i \in G$	(A.12)
$u_{it} - u_{it-1} = v_{it} - w_{it}$ $\forall i \in G, t \in T$	(A.13)
$q_{it} + rr_{it} \le \overline{P}_{it}u_{it} + (\overline{PR}_{it} - \overline{P}_{it})ur_{it} \forall i \in G_1, t \in T$	(A.14)
$q_{it} - rr_{it} \ge \underline{P}_{it}u_{it} + (\underline{PR}_{it} - \underline{P}_{it})ur_{it} \forall i \in G_1, t \in T$	(A.15)
$q_{it} - q_{it-1} \le (RR_{it} + \underline{P}_{it-1})u_{it} - \underline{P}_{it-1}u_{it-1} + (\underline{P}_{it} - \underline{P}_{it-1} - 0.5RR_{it})$	vit
$\forall i \in G, t \in T \setminus \{0\}$	(A.16)
$-q_{it} + q_{it-1} \leq -\underline{P}_{it}u_{it} + (RR_{it} + \underline{P}_t)u_{it-1} + (\overline{P}_{it-1} - RR_{it} - \underline{P}_{it})w_{it}$	
$\forall i \in G, t \in T \setminus \{0\}$	(A.17)
$\sum_{t \in \{0, \cdots, 23\}} q_{it} \leq TP_i, \sum_{t \in \{24, \cdots, 35\}} q_{it} \leq TP_i \forall i \in G$	(A.18)
$\sum_{i \in I \cap I_{i}, \dots, m \setminus i} v_{il} \leq TS_i, \sum_{i \in I \cap I_{i}, \dots, m \setminus i} v_{il} \leq TS_i \forall i \in G$	(A.19)

$\min_{\substack{f,q_{ult}, w_i, \phi_i, \delta_i, \\ w_i \in T_r, r_i, r_i, r_i \in G}} \sum_{i \in T} \sum_{i \in T} \sum_{i \in S} d_{is} \delta_{ist} + a_i u_{it} + f_{it}) + \sum_{t \in T} \sum_{i \in VT} v m_{it} cx_{it} x_{it} - \sum_{t \in T} \sum_{i \in DD} cy_{it} y_{it}$	(A.1)
$+\sum_{i \in G} \sum_{t \in T} (cr_{it}rr_{it} + cs_{it}rs_{it} + csn_{it}rsn_{it} + csf_{it}rsf_{it}) + \sum_{t \in T} M\lambda_{lt}$	(A.2)
s.t. $f_{it} \ge h_{it}^k p_{it} - h_{it}^k p_{it}^k u_{it} \forall k = 1, \cdots, K - 1, \forall i \in G, \forall t \in T$	(A.3)
$\sum_{i \in G} (q_{it}) + \sum_{i \in VT} vm_{it}x_{it} - \sum_{i \in DD} y_{it} = D_t \forall t \in T$	(A.4)
$\sum_{t \in G} rr_{it} \ge R_t \forall t \in T$	(A.5)
$\sum_{i \in G} (rr_{it} + rs_{it}) \ge R_t + RS_t \forall t \in T$	(A.6)
$\sum_{i \in G} (rr_{it} + rs_{it} + rsn_{it} + rsf_{it}) \ge R_t + RC_t \forall t \in T$	(A.7)

Challenges of Solving SCUC

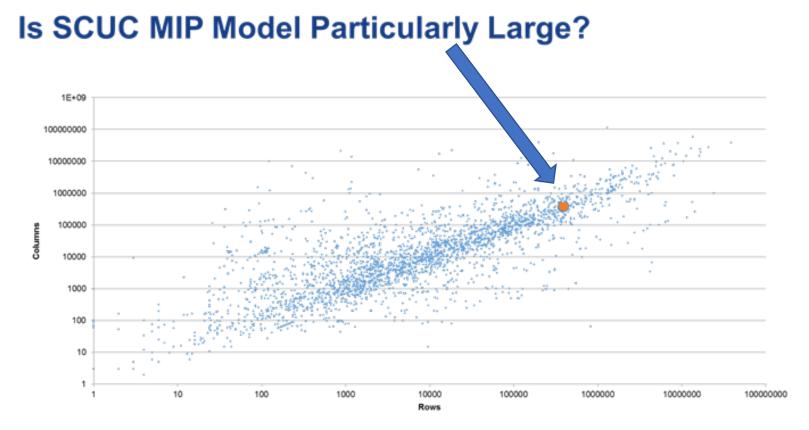
Solving MIP is Hard

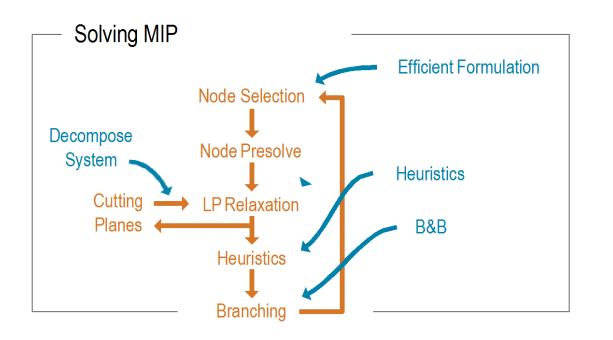
Size of problem – number of resources, time resolution, cost details.


Security constraints - dense, linking resources across the power system.

Feasibility test - solving SCUC multiple times

Reserve requirements- another set of system-wide constraints.


Combinatorial nature - several conditions in combination, sensitive to input.


High-quality solutions -cost efficiency, reliability and fairness.

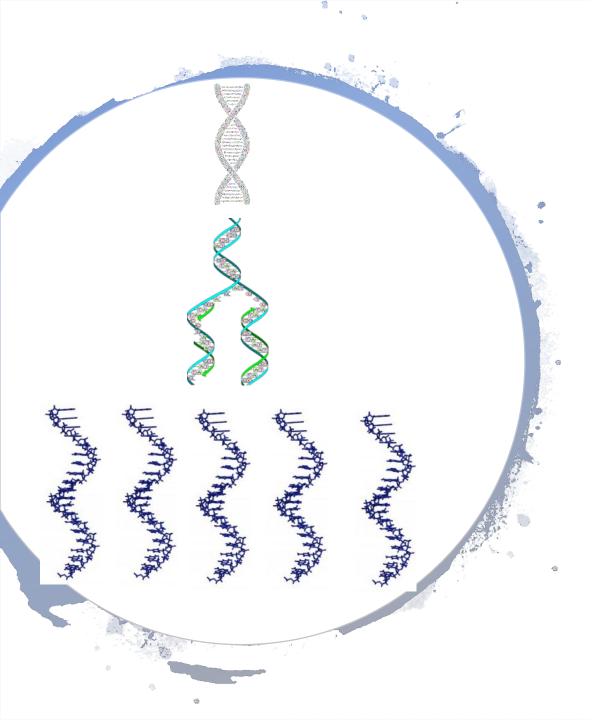
Large size with limited time and high accuracy requirement

- MISO: 20 minute and 0.1% MIP gap for each DA SCUC run
- 2-3 runs

A single process of searching for incumbent solution and certifying incumbent solution.

Solving SCUC – Traditional Approach

Focus on a single formulation and single solution	
process.	


Improve formulation.

Cutting planes.

Decomposition methods.

Feasibility check after solving a single SCUC.

Searching for incumbent solution and certifying incumbent solution in a single process.

Solving SCUC – HIPPO Approach

Organic solution framework

Parallel algorithmic steps.

Concurrent execution of multiple algorithms.

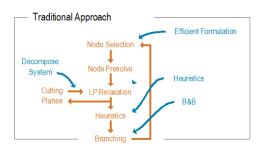
Communication among algorithms during execution.

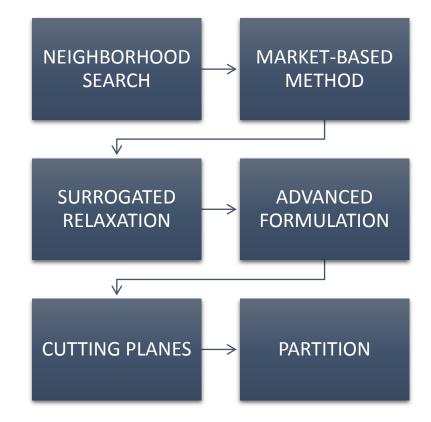
Separated procedures for search and certification.

Callback - accessing intermediate state of solution process.

 MANAGE ALGORITHMS, SHARE SOLUTIONS, COMMUNICATE INFORMATION 	

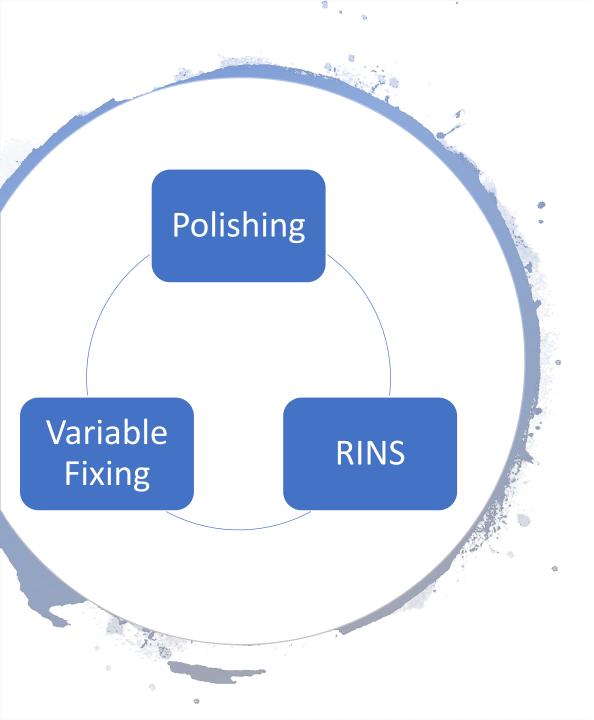
MIP Model	MIP Solution Strategy		Neighborhood Search	Decomposition			
Tighter formulations	GUROBI Callback	Parallelization & Anti-symmetry	Polishing, RINS	ADMM, Benders			
Validated with standard solver on	Share intermediate solution	Partition solution space through	Generate reduced MIP by mixing	Break problem into sma ll er			
70 cases Efficient	Maintain solution state	Reduce symmetry to improve search reducing constraints Identify high quality s	Identify high quality	ce symmetry reducing constraints sol	reducing constraints solving indi	reducing constraints	subproblems, solving individual subproblems.
implementations	Control TX constraint size			Control number of iterations and			
	Manage cuts			convergence.			
	Control branching strategy						


HIPPO Technology



METHODOLOGY

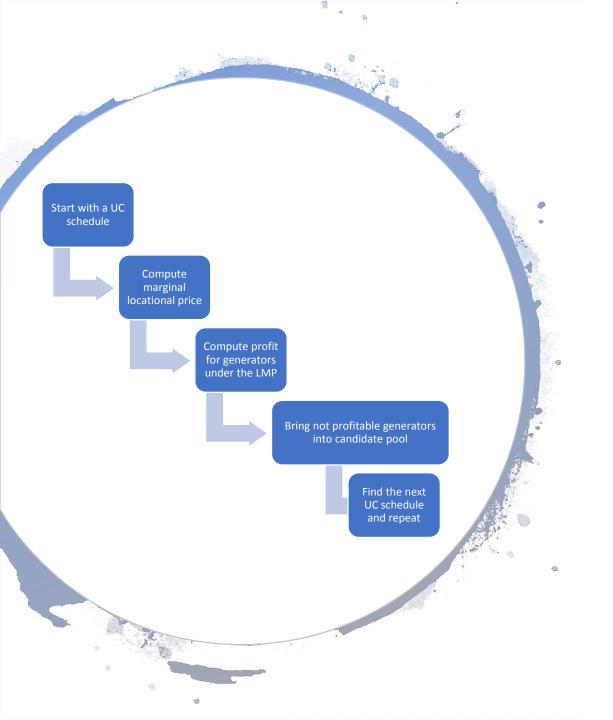
SOFTWARE



HIPPO Methodology

MANAGE ALGORITHMS, SHARE SOLUTIONS, COMMUNICATE INFORMATION

MIP Model	MIP Solution Strategy		Neighborhood Search	Decomposition	
Tighter formulations	GUROBI Callback	Parallelization & Anti-symmetry	Polishing, R I NS	ADMM, Benders	
Validated with standard solver on	tandard solver on 70 cases solution space through smart branching. MIF var reducir Efficient implementations Maintain solution state Reduce symmetry to improve search reducir	space through	Generate reduced MIP by mixing	Break problem into smaller	
Efficient		Reduce symmetry	variables and reducing constraints	subproblems, solving individual subproblems.	
implementations		Identify high quality reduced MIP	Control number of iterations and		
-	Manage cuts			convergence.	
	Control branching strategy				


Neighborhood Search – Some Details

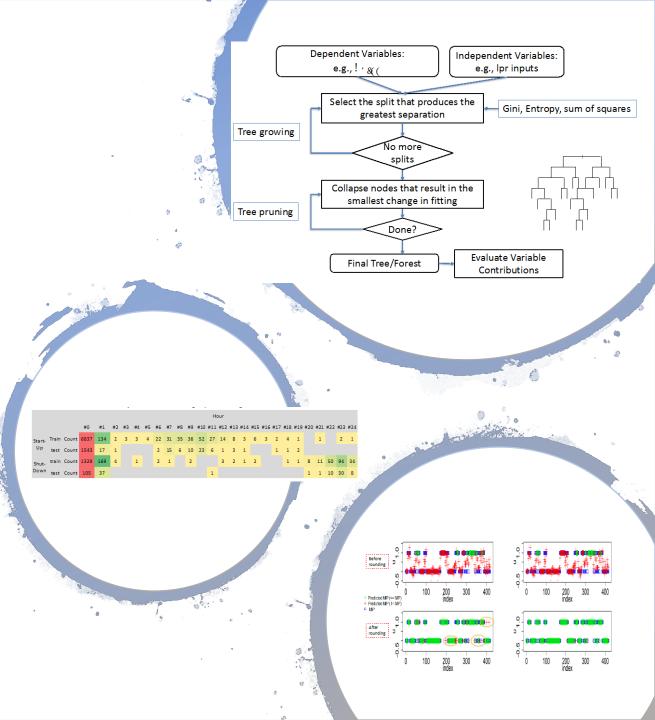
Variable Fixing - select center based on LP relaxation solution enhanced by machine learning.

Polishing – iterative improve center based on market-based strategy

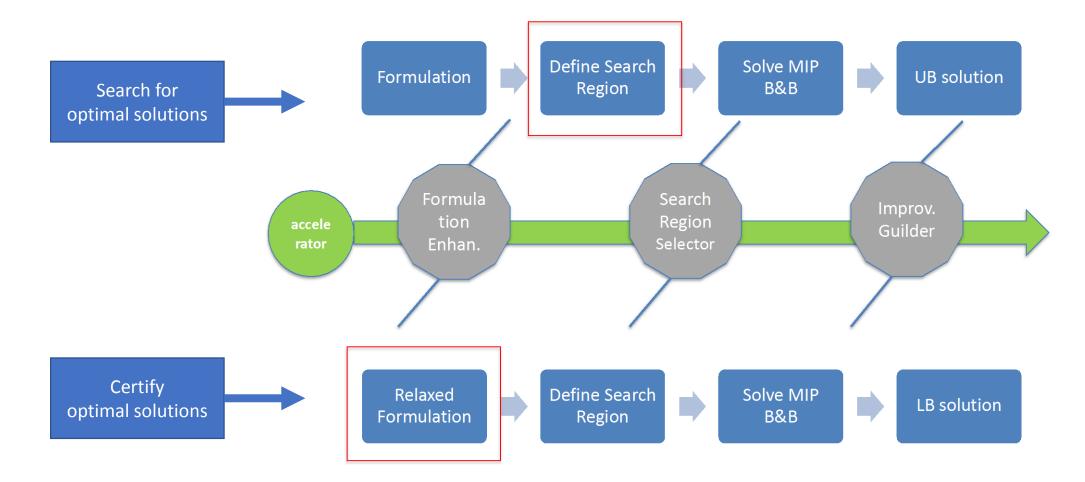
RINS - select center based on consensus between known solution and LP relaxation.

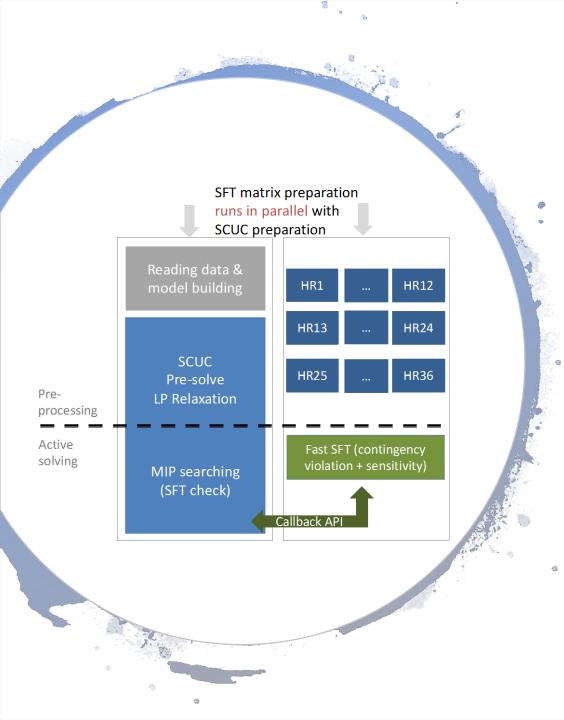
Market Based Methods – Profit Maximization

Use market efficiency to identify "out-of money" generators which can potentially reduce objective cost.

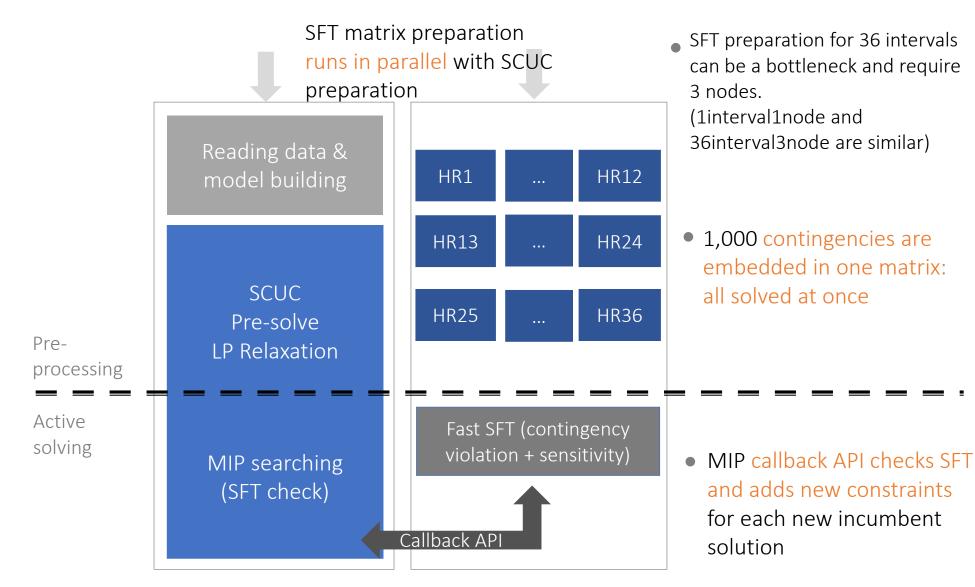

Robust – generate multiple directions for improvement and parallelizable.

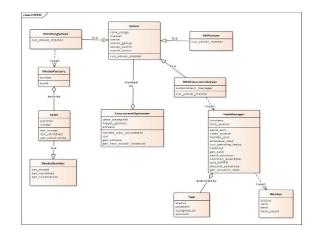
Explore Machine Learning

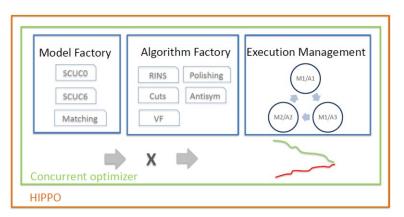

Used as an accelerator to close distance to optimal solution

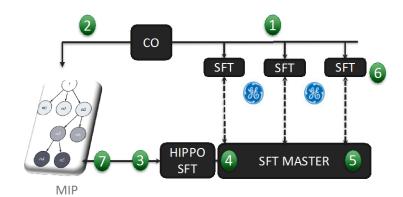

Used as predictor to narrow the start and shut-down windows.

Combining regression and classification models.


A view of Overall Solution Process


HIPPO - Simultaneous Feasibility Test (SFT)


Check feasibility of a given configuration of resource dispatch and load distribution. Extremely fast SFT allows iteration with HIPPO SCUC through callback New SFT design uses parallel processing, is easily configurable across server nodes & uses efficient communication between SFT & MIP.



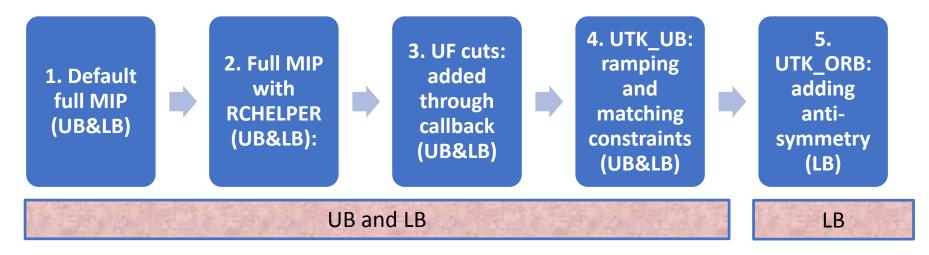
- 1000 contingency * 36 interval SFT can finish in 5 second!
- Can be integrated with MIP callback and solve SCUC-SFT in one pass.

MIP_MSS_10901201901102309_0X_run1_um1_CONCURRENT.log						
SFT configuration	3node*12processor	1node *12 processor	1node*36processor	6node*6processor		
Pre-processing #Matrix/Node	12	12	36	6		
#nodes	3	1	1	6		
#Matrix	36	12	36	36		
	40.22 195.70 252	39.85 197.47 252	418.73 572.77 252	5.82 161.28 252		
	4.46 203.47 7	8.82 209.61 7	7.88 583.93 7	3.88 168.44 7		
	4.34 237.23 1	8.73 248.44 1	7.84 620.60 1	3.84 201.45 1		
SFT run time end time #violation	4.35 260.45 0	8.70 276.21 0	7.73 646.93 0	3.83 224.04 0		
	4.40 276.81 0	8.23 296.49 0	7.42 666.12 0	3.80 239.68 0		
	4.36 294.97 1	8.60 319.35 1	7.85 687.60 1	3.75 257.12 1		
	4.35 312.84 1	8.70 341.97 1	7.65 708.68 1	3.77 274.27 1		
	4.36 328.24 0	8.29 361.73 0	7.74 727.39 0	3.85 289.09 0		
Total Time	419	452	816	378		
	H 0 0 1.640910e+07	H 0 0 1.640910e+07	H 0 0 1.640910e+07	H 0 0 1.640910e+07		
	1.6355e+07 0.33% - 115s	1.6355e+07 0.33% - 116s	1.6355e+07 0.33% - 492s	1.6355e+07 0.33% - 80s		

HIPPO Software

PYTHON PROGRAMMING LANGUAGE.

EXECUTABLE IN DESKTOP AND HPC.


DATA MODULE, FORMULATION FACTORY, ALGORITHM FACTORY, CONFIGURATION SCRIPTS.

CONFIGURABLE CONCURRENT OPTIMIZER.

CONTINUING DEVELOPMENT.

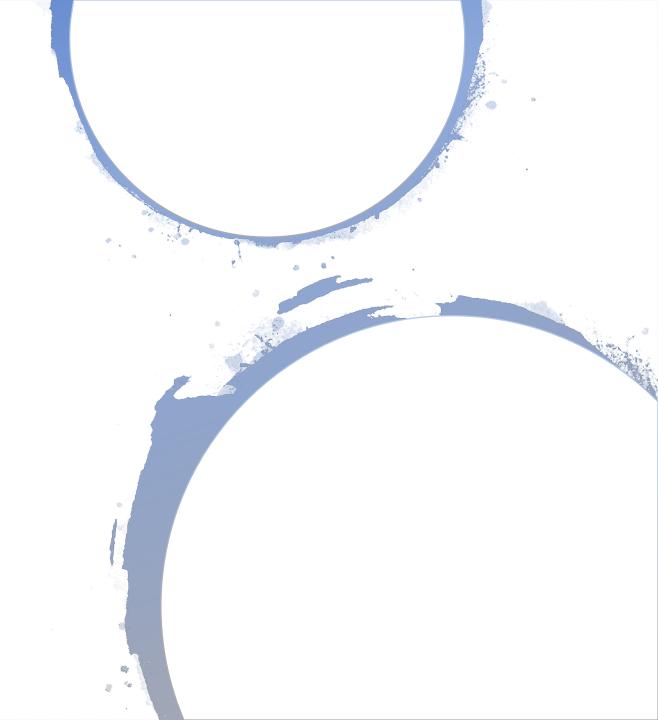
HIPPO Concurrent Optimizer Configuration I

Gurobi full MIP with different settings Using customized **Gurobi8.1.0** with variable fixing fork-off

May also be valid for UB. Need to add a validation step

HIPPO Technology

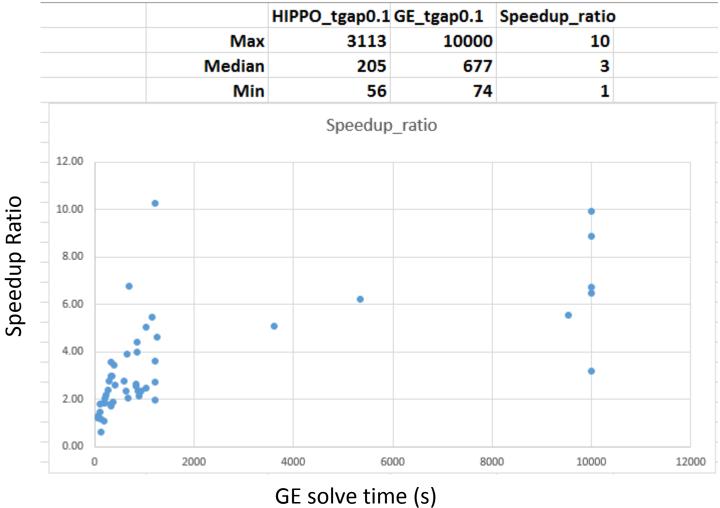
Market data handler

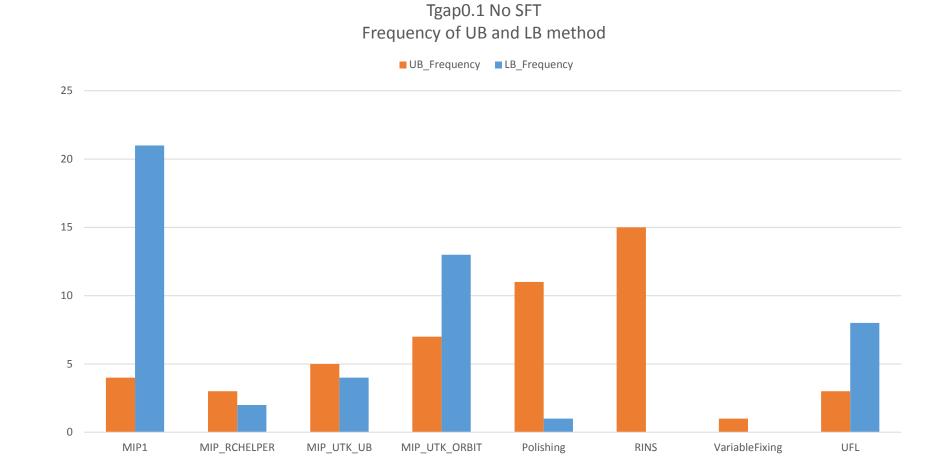

Formulation module

Algorithm

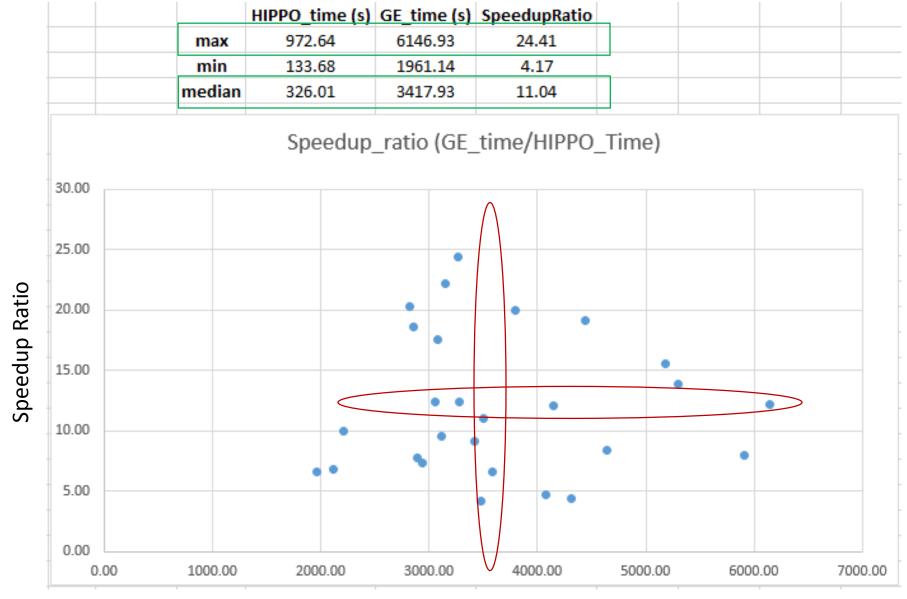
Q

Security constraints


Simultaneous feasibility test.


HIPPO Performance

- 3-10X for SCUC without SFT
- 4-24X for SCUC with SFT


HIPPO_Concurrent versus GE (no SFT)

Tgap0.1 No-SFT: Frequency of UB and LB methods

HIPPO_Concurrent versus GE (with SFT)

Comparison by case

	HIPPO			Speedup_ratio
case	tgap0.1 run	Gap	GE_time	(GE_time/HIPPO_Tim
MSS_20401201902102484_0X	502.10	0.09	6146.93	12.24
MSS_12401201901102815_0X	736.99	0.09	5908.18	8.02
MSS_21101201902103798_0X	382.21	0.08	5304.97	13.88
MSS_10901201901102309_0X	332.32	0.10	5185.01	15.60
MSS_21401201902102345_0X	554.34	0.07	4646.35	8.38
MSS_21201201902102208_0X	231.94	0.10	4447.27	19.17
MSS_12801201901103679_0X	972.64	0.10	4310.16	4.43
MSS_12901201901102058_0X	344.32	0.10	4149.80	12.05
MSS_31501201903091896_0X	869.88	0.08	4075.27	4.68
MSS_12201201901102121_0X	189.59	0.09	3791.59	20.00
MSS_12101201901103726_0X	545.02	0.10	3587.83	6.58
MSS_31101201903092243_0X	317.02	0.09	3500.83	11.04
MSS_21501201902102935_0X	835.62	0.10	3482.29	4.17
MSS_31401201903091482_0X	373.79	0.10	3417.93	9.14
MSS_31201201903092764_0X	263.53	0.09	3277.54	12.44
MSS_20601201902101872_0X	133.68	0.10	3263.62	24.41
MSS_31801201903091613_0X	141.80	0.10	3149.88	22.21
MSS_10801201901101208_0X	326.01	0.09	3118.49	9.57
MSS_22201201902102387_0X	175.76	0.10	3078.86	17.52
MSS_31301201903091864_0X	246.38	0.07	3060.54	12.42
MSS_30801201903101344_0X	399.97	0.09	2940.59	7.35
MSS_20501201902101976_0X	370.18	0.10	2888.79	7.80
MSS_20701201902102380_0X	153.53	0.07	2855.89	18.60
MSS_21601201902101713_0X	138.79	0.09	2823.06	20.34
MSS_12301201901101610_0X	222.01	0.10	2213.88	9.97
MSS_12601201901101230_0X	310.38	0.10	2111.20	6.80
MSS_12501201901101807_0X	296.88	0.10	1961.14	6.61

HIPPO_Concurrent versus GE (with SFT)

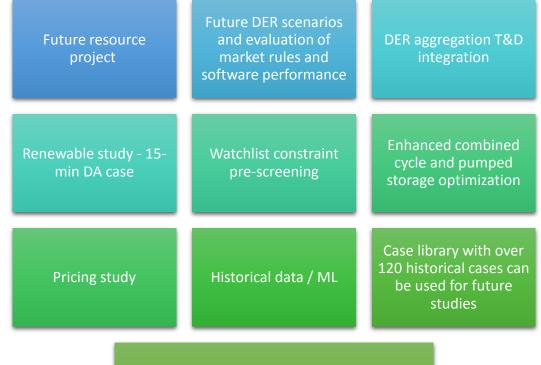
HIPPO Status

- Current status
- Future plan and opportunities

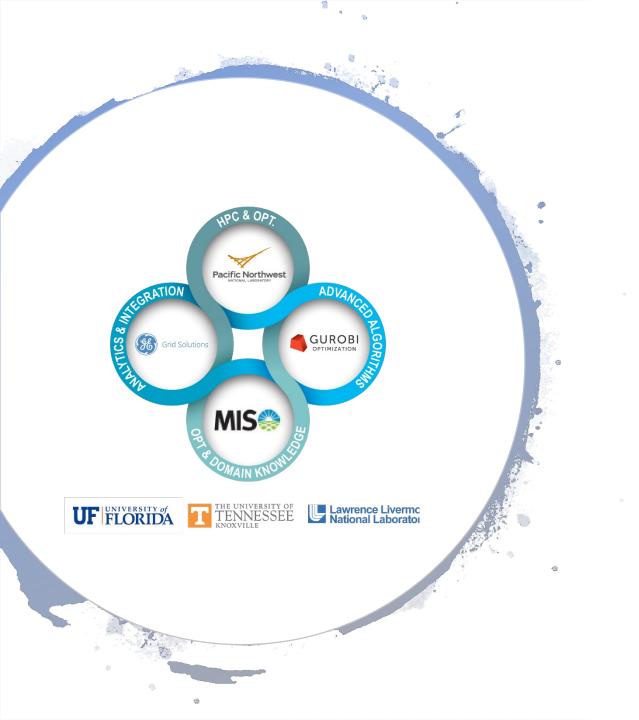
HIPPO – Current Status

Validated with MISO-GE production models.

Good performance results.


Remove computation hurdles and technology transfer.

Test for future cases -15-min interval, increasing virtuals and dispatchable demands


Improve HIPPO for usability and to handle the next generation challenges.

HIPPO at MISO

Evaluate path for production implementation

Thank you!