
Newton Energy Group

gpuCA
a GPU-based Contingency Analysis Tool

Presented to FERC's 2019 Technical Conference

John Goldis – Newton Energy Group
Andrei Kharchenko – Newton Energy Group

Aleksandr Rudkevich – Newton Energy Group
Yonghong Chen – MISO Energy
Fengyu Wang – MISO Energy

This work was partially funded by MISO R&D grant

Agenda

• Motivation

• GPU vs CPU

• GPU and Contingency Analysis

• MISO Case Study

• Algorithmic and Architectural Approach

• Initial Results

• Conclusions

Motivation

• Contingency Analysis is often a bottleneck in planning and
market clearing algorithms

• Due to the large number of constraints to be screened there are
two typical approaches

– Limiting the set of contingency constraints based on offline assessment

– Using HPC servers to parallelize the process on the CPU

• The first approach misses relevant contingency events that may
occur as the state of the system changed in real time

• The second approach can be expensive and difficult to manage

GPU vs CPU Performance

While the GPU can process significantly more floating point operations per second, the CPU processes
significantly more instructions per second, i.e. the clock speed (not shown in diagram)

GPU and Optimization

Can optimization problems benefit from parallel supercomputers compared to sequential
machines?

LP:

• Interior Point method for power market
applications observers a 4x speed-up from
parallel implementation

MIP:

• Complex algorithms, many logical operations
• Parallel implementations on par with sequential
• In general, problems are NP-hard (solution

cannot be deterministically found within
polynomial time)

min𝑝𝑇 = 𝑥
subject to:
𝐴𝑥 = 𝑏
𝑥 ≥ 0

max𝑝𝑇𝑥
subject to:
𝐴𝑥 = 𝑏
𝑥 ≥ 0
𝑥 ∈ {0,1}

Except for LP implementations, MIP problems show minimal benefit from parallelization

GPU and the SCOPF Algorithm

Hard to
parallelize

block

Naturally
parallelizable

block

• Computational complexity: NP-hard
• Irregular data structure
• Complex algorithm relying on logical

decisions
• Fits sequential (Intel) architectures

• Computational complexity:
O(# buses, #branches, #monitored
elements, # contingencies)

• Performance bottleneck due to massive data
• Regular data structure
• Simple algorithm relying on floating point

operations
• Fits GPU multiprocessor architectures

i++

Optimize base case
operation subproblem

i = 1

Solve PF for contingency i

Contingency
Analysis Identify violated

constraints

i > # conts

violations
= 0

Save the output

infeasible

feasible

yes

no

yes

no

MISO Case Study

7

As part of a Phase I MISO Energy grant, NEG performed a simulation of
contingency analysis for the MISO system for a single hour.

• 45,110 nodes

• 57,461 branches

• 9,364 monitored branches

• 2,324 contingencies => 21,761,936 constraints to analyze

• Current hour nodal dispatch, load, PAR settings, flow limits and
generator sensitivities for the base topology are provided from the UC
or ED solution

• Run on Nvidia P100 GPU card (with workstation), provided by MISO

, ()M M M S Sf b p l     = +  +  − 

,M M M S Sb b b   = +

1

, ()M S M SI  

− = −

• The Contingency Analysis algorithm relies on Flow Cancelling Transactions (FCTs) developed as part of an
ARPA-E project on topology optimization

• All contingencies are mutually independent and naturally parallelizable

• The algorithm solves for the flow on all monitored elements in the set 𝑀 under contingency 𝛿
• After identifying violations, sensitivities are calculated for violated constraints

Algorithmic Implementation

f = bM𝛿
0 + Ψ𝑀𝛿 ∗ 𝑝 − 𝑙 + Φ𝑀𝛿 ∗ 𝐼 − Φ𝑠𝛿

−1 ∗ 𝑏𝑠𝛿
0 + Ψ𝑠𝛿 ∗ 𝑝 − 𝑙

32-128

32-128

32-128

32-128

32-128

32-128

32-128

1 2 3 … 30 31 … 60 61 …
b1,1 b2,1 b3,1 b30,1 … … …
b1,2 b2,2 b3,2 b30,2

b2,3 b3,3

b2,4 b3,4

b2,5

O
p

en
 b

ra
n

ch
 #

Contingency #

Each contingency being run in parallel drives additional parallel matrix calculations, up to 128 threads

30

Contingency Analysis Parallelization on the GPU

GPU CA Implementation in Two Phases
Data transformation LayerApplication layer

Init_commons (Φ, Ψ,
b0, ρ, ρx);

Converting from main
application memory layout of Φ,
Ψ, b0, ρ, ρx to MISD-friendly layout
ΦG, ΨG, b0

G, ρG, ρxG and passing by
reference to GPU control module

CPU GPU

Copying
Φ, Ψ, b0, ρ, ρx

to GPU
memory

% for each of group of 30
contingencies

Converting contingency set
C to CG and passing to GPU

Copying CG

to GPU Performing CA

Copying the result
from GPU

Copying Result back to
Application

Clear memory (); Instructing GPU to free ΦG,
ΨG, b0

G, ρG, ρxG to GPU’s memory
Freeing

ΦG,ΨG,b0
G,ρG

,ρxG

A1

B1

D1

A2

B2

B6

D2

A3

B3

B5

B4

D3

Linux/Windows server Linux/Windows serverLinux/Windows server

Initialize CA process
and data

Phase 1

C1
For all violated
constraints, initialize
sensitivity calculation

Converting violatied
constraint set V to VG and
passing to GPU

C2

Copying the result
from GPU

C3

C5

C4
Copying VG

to GPU

GPU Layer

Phase 2

Calculating
sensitivities

Copying Result back to
Application

C6

Performance Statistics

11

Out of the 21,761,936 constraints evaluated 3,266 were found to be violated

Category Time in Seconds
Time to transfer non sensitivity data to GPU (A2 + A3) 0.77

Time to transfer the sensitivity matrices to GPU (A2 + A3) 1.19

Time to perform phase 1 on the GPU - contingency analysis (B2+B3+B4+B5) 21.05

Time to write results of phase 1: CA results and branch flows (B6*) 6.87

Time to perform phase 2 on the GPU (C2+C3+C4+C5) 6.16

Time to free memory (D1+D2) 0.17

Time to write sensitivities from phase 2 to CSV (C6*) 145.31

Total Time without writing results 29.33

Total Time 180.75

• phase 1, which calculates flows and determines violated constraints takes 21.05 seconds

• phase 2, which calculates sensitivities for each of the violated constraints takes 6.16 seconds

• Most of the time is taken up by file I/O operations, which could largely be eliminated if results were
passed in memory from the gpCA application back to the core algorithm (see previous slide)

• Transfer of data from the CPU to the GPU took 1.96 seconds

Conclusions

12

The current Phase 1 implementation is slower than MISO’s current development on HPC under the
ARPA-E HIPPO project

• HPC implementation has large number of cores

• The volume of data requires GPU algorithm to solve contingencies in batches, limiting the level of
parallelization.

• Need to investigate alternative methods to minimize data volume stored on GPU

• Add additional GPU card

The current Phase 2 implementation runs quickly

• Number of violated constraints generally small enough to be processed fully in parallel without
batching

Questions

For Questions, Contact

John Goldis

Newton Energy Group

jgold@negll.com

13

