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Motivation

• Contingency Analysis is often a bottleneck in planning and 
market clearing algorithms

• Due to the large number of constraints to be screened there are 
two typical approaches

– Limiting the set of contingency constraints based on offline assessment

– Using HPC servers to parallelize the process on the CPU

• The first approach misses relevant contingency events that may 
occur as the state of the system changed in real time

• The second approach can be expensive and difficult to manage 



GPU vs CPU Performance

While the GPU can process significantly more floating point operations per second, the CPU processes 
significantly more instructions per second, i.e. the clock speed (not shown in diagram)



GPU and Optimization

Can optimization problems benefit from parallel supercomputers compared to sequential 
machines?

LP:

• Interior Point method for power market 
applications observers a 4x speed-up from 
parallel implementation

MIP:

• Complex algorithms, many logical operations
• Parallel implementations on par with sequential
• In general, problems are NP-hard (solution 

cannot be deterministically found within 
polynomial time)

min𝑝𝑇 = 𝑥
subject to:
𝐴𝑥 = 𝑏
𝑥 ≥ 0

max𝑝𝑇𝑥
subject to:
𝐴𝑥 = 𝑏
𝑥 ≥ 0
𝑥 ∈ {0,1}

Except for LP implementations, MIP problems show minimal benefit from parallelization



GPU and the SCOPF Algorithm

Hard to 
parallelize 

block

Naturally 
parallelizable 

block

• Computational complexity: NP-hard
• Irregular data structure
• Complex algorithm relying on logical 

decisions
• Fits sequential (Intel) architectures

• Computational complexity: 
O(# buses, #branches, #monitored 
elements, # contingencies) 

• Performance bottleneck due to massive data
• Regular data structure
• Simple algorithm relying on floating point 

operations
• Fits GPU multiprocessor architectures
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MISO Case Study
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As part of a Phase I MISO Energy grant, NEG performed a simulation of 
contingency analysis for the MISO system for a single hour.

• 45,110 nodes

• 57,461 branches

• 9,364 monitored branches

• 2,324 contingencies => 21,761,936 constraints to analyze

• Current hour nodal dispatch, load, PAR settings, flow limits and 
generator sensitivities for the base topology are provided from the UC 
or ED solution

• Run on Nvidia P100 GPU card (with workstation), provided by MISO
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• The Contingency Analysis algorithm relies on Flow Cancelling Transactions (FCTs) developed as part of an 
ARPA-E project on topology optimization

• All contingencies are mutually independent and naturally parallelizable 

• The algorithm solves for the flow on all monitored elements in the set 𝑀 under contingency 𝛿
• After identifying violations, sensitivities are calculated for violated constraints

Algorithmic Implementation
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Each contingency being run in parallel drives additional parallel matrix calculations, up to 128 threads
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Contingency Analysis Parallelization on the GPU



GPU CA Implementation in Two Phases
Data transformation LayerApplication layer

Init_commons (Φ, Ψ, 
b0, ρ, ρx);

Converting from main 
application  memory layout of Φ, 
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Performance Statistics
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Out of the 21,761,936 constraints evaluated 3,266 were found to be violated

Category Time in Seconds
Time to transfer non sensitivity data to GPU (A2 + A3) 0.77

Time to transfer the sensitivity matrices to GPU (A2 + A3) 1.19 

Time to perform phase 1 on the GPU - contingency analysis (B2+B3+B4+B5) 21.05 

Time to write results of phase 1: CA results and branch flows (B6*) 6.87 

Time to perform phase 2 on the GPU (C2+C3+C4+C5) 6.16 

Time to free memory (D1+D2) 0.17 

Time to write sensitivities from phase 2 to CSV (C6*) 145.31 

Total Time without writing results 29.33

Total Time 180.75 

• phase 1, which calculates flows and determines violated constraints takes 21.05 seconds

• phase 2, which calculates sensitivities for each of the violated constraints takes 6.16 seconds

• Most of the time is taken up by file I/O operations, which could largely be eliminated if results were 
passed in memory from the gpCA application back to the core algorithm (see previous slide)

• Transfer of data from the CPU to the GPU took 1.96 seconds 



Conclusions
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The current Phase 1 implementation is slower than MISO’s current development on HPC under the 
ARPA-E HIPPO project

• HPC implementation has large number of cores

• The volume of data requires GPU algorithm to solve contingencies in batches, limiting the level of 
parallelization. 

• Need to investigate alternative methods to minimize data volume stored on GPU

• Add additional GPU card

The current Phase 2 implementation runs quickly

• Number of violated constraints generally small enough to be processed fully in parallel without 
batching



Questions

For Questions, Contact

John Goldis

Newton Energy Group

jgold@negll.com
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