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• Unit commitment (UC) problems are becoming increasingly 

larger in size and complexity, such as 

– Shorter time intervals and longer horizons

 Maintain system reliability by having more control over resources

– Various system- and area-level reserve requirements

 Maintain system reliability

– Discrete variables make problem combinatorial

 Exponential growth in complexity as problem sizes increase

Introduction - UC
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• Unit commitment (UC) problems are becoming increasingly 

larger in size and complexity, such as 

– Shorter time intervals and longer horizons

 Maintain system reliability by having more control over resources

– Various system- and area-level reserve requirements

 Maintain system reliability

– Discrete variables make problem combinatorial

 Exponential growth in complexity as problem sizes increase

• Obtaining high-quality solutions to such problems is crucial 

for efficient and fair operation of large power systems 

• Widely used branch and cut (B&C) may not obtain quality 

solutions in a reasonable amount of time

Introduction - UC
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• In our work, a multiple-hour unit commitment problem is 

created based on the publically available Polish system (usually 

used for power flow) with the following characteristics:

– 15-minute time intervals for 12 hours

– System- and area-level reserve requirements

– Transmission capacity constraints 

– Transmission capacity and reserves modeled by soft constraints 

 Penalize constraint violations with predetermined penalties

Introduction – Our work
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• In our work, a multiple-hour unit commitment problem is 

created based on the publically available Polish system (usually 

used for power flow) with the following characteristics:

– 15-minute time intervals for 12 hours

– System- and area-level reserve requirements

– Transmission capacity constraints 

– Transmission capacity and reserves modeled by soft constraints 

 Penalize constraint violations with predetermined penalties

• We present a novel decomposition and coordination algorithm

– Exploit separability and accelerate convergence by penalties 

– Improve convergence through selective relaxation of constraints

– Improve computational efficiency

– Further speed up by efficient parallelization

Introduction – Our work



Introduction – A glance of testing results 

• B&C does not find a quality solution within an hour *

• SAVLR + B&C finds a near- optimal solution within 10 min 

6/23/2015 7
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*: A tough testing case is created by UConn. The testing is performed on MATLAB R2018a 

and commercial solver IBM ILOG CPLEX Optimization Studio V 12.8.0.0 on a PC with 

2.90GHz Intel Core(TM) i7 CPU and 32G RAM.



• Why soft constraints?

– Ensure technical feasibility when the original problem is infeasible [1]

– Simplify coordination of our algorithm by not relaxing these constraints  
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Problem Formulation

• subject to unit, area, and system level constraints

• Soft reserve constraints:
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Penalty variable allows constraint to be violated 

1. Y. M. Al-Abdullah, A. Salloum, K. W. Hedman and V. Vittal, "Analyzing the Impacts 

of Constraint Relaxation Practices in Electric Energy Markets," in IEEE Transactions 

on Power Systems, vol. 31, no. 4, pp. 2566-2577, July 2016.
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Foundations of our novel algorithm

• Decomposition and coordination - Lagrangian Relaxation (LR) 

– A “dual” approach (prices as decision variables)

• Major difficulties with discrete variables:

– Solving all subproblems is time consuming  

– Multipliers suffer from major zigzagging 

– Require the optimal dual value q*
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• Surrogate Lagrangian Relaxation (SLR): overcame the above

– Surrogate optimality condition 

 Ensure directions point toward the optimal multipliers

 Obtain smoother directions with less effort (1 subproblem)

– Stepsizing rule without requiring q* → Guarantee convergence
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Foundations of our novel algorithm

• Decomposition and coordination - Lagrangian Relaxation (LR) 

– A “dual” approach (prices as decision variables)

• Major difficulties with discrete variables:

– Solving all subproblems is time consuming  

– Multipliers suffer from major zigzagging 

– Require the optimal dual value q*

• Surrogate Lagrangian Relaxation (SLR): overcame the above

– Surrogate optimality condition 

 Ensure directions point toward the optimal multipliers

 Obtain smoother directions with less effort (1 subproblem)

– Stepsizing rule without requiring q* → Guarantee convergence

• Surrogate Absolute-Value Lagrangian Relaxation (SAVLR): 

– Accelerate convergence by using absolute value penalties
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• Improve convergence through selective relaxation of 

constraints 

– Numerous system-wide coupling constraints ~ slow coordination 

– Only relax the demand constraints 

– Penalize soft coupling constraints, not relax

– Fewer multipliers → faster convergence to optimal values

Further improvements
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• Improve convergence through selective relaxation of 

constraints 

– Numerous system-wide coupling constraints ~ slow coordination 

– Only relax the demand constraints 

– Penalize soft coupling constraints, not relax

– Fewer multipliers → faster convergence to optimal values

• Improve computational efficiency

– Build only varying components of subproblem models at each 

iteration

• Further speed up by efficient parallelization

– Solve a few subproblems at a time in parallel

Further improvements
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Relaxed problem with absolute value penalties
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Relaxed demand Absolute value penalties for constraint 

violations accelerate convergence

• Relax the demand constraints, and penalize the constraint 

violation by absolute value functions 

• Penalize soft coupling constraints, i.e., reserve requirements and 

transmission capacity constraints 
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Subproblem formulation 
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Linearized absolute 

value penalties

Decision variables which don’t 

belong to the subproblem are fixed

• Area-wise subproblems

– Decouple subproblems w.r.t area-level constraints

– If more subproblems are desired, then areas are further divided 
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Flow chart  

• A synergistic integration of two 

methods

• Reduced complexity of subproblems 

→ B&C solves subproblems quickly
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Flow chart  

• A synergistic integration of two 

methods

• Reduced complexity of subproblems

→ B&C solves subproblems quickly

• Significant overhead in building 

subproblem models due to numerous 

constraints

– How to decrease overhead?
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Computational efficiency improvement

• Most parts of the subproblem model doesn’t change at each 

iteration (e.g., constraint matrix)

• Change the modeling language from OPL to MATLAB

– Vectorization of loops for building constraints → reduce time 

– To improve efficiency, only the components which change are 

built at each iteration (e.g., multiplier terms in the objective 

function)

– Furthermore, subproblem models are built simultaneously by 

utilizing parallel processors
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Numerical testing – Sequential SAVLR +B&C
• Polish system (327 units, 2383 buses, 2896 lines, 6 areas)

• The problem is decomposed into 20 subproblems (subareas)

• 2 instances of the problem are solved



Gap: 1.05% Gap: 1.1%
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Numerical testing – Sequential SAVLR +B&C

• B&C doesn’t find a quality solution within 1 hour 

– 15-min interval  lower ramping capability  higher complexity

• SAVLR+B&C finds near-optimal solutions within 10 minutes

• Polish system (327 units, 2383 buses, 2896 lines, 6 areas)

• The problem is decomposed into 20 subproblems (subareas)

• 2 instances of the problem are solved

Problem

• 608 k constraints

• 231 k decision variables 

(32 k binary)



Gap: 1.05% Gap: 1.1%
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Numerical testing – Sequential SAVLR +B&C

• B&C doesn’t find a quality solution within 1 hour 

– 15-min interval  lower ramping capability  higher complexity

• SAVLR+B&C finds near-optimal solutions within 10 minutes

• Can performance be further sped up? Multiple processors?

• Polish system (327 units, 2383 buses, 2896 lines, 6 areas)

• The problem is decomposed into 20 subproblems (subareas)

• 2 instances of the problem are solved

Problem

• 608 k constraints

• 231 k decision variables 

(32 k binary)
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Parallel SAVLR + B&C
• How can SAVLR utilize 

multiple processors efficiently?

– Solve all subproblems → 

Similar to traditional LR → 

slow convergence

– Solve a few subproblems at a 

time → Preserve the spirit of 

SAVLR while utilizing 

multiple processors → faster 

convergence
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Numerical testing – Parallel SAVLR + B&C

• Parallel SAVLR finds near-optimal solutions quicker than 

sequential SAVLR

– Smooth directions for updating multipliers are obtained quickly 

by solving a few of subproblems simultaneously

• 4 subproblems are solved in parallel

Gap: 0.98% 1.05% Gap: 1% 1.1%
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Concluding remarks
• SAVLR is a vast improvement over traditional LR

– Exploit separability where B&C cannot → reduce complexity 

– Surrogate subgradient directions + novel stepsizing rule + 

absolute value penalties + selective relaxation of constraints   → 

faster and guaranteed convergence

– Further speed up by efficient parallelization
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Concluding remarks
• SAVLR is a vast improvement over traditional LR

– Exploit separability where B&C cannot → reduce complexity 

– Surrogate subgradient directions + novel stepsizing rule + 

absolute value penalties + selective relaxation of constraints   → 

faster and guaranteed convergence

– Further speed up by efficient parallelization

• Exciting results

– SAVLR+B&C finds near-optimal solutions within 10 minutes 

while B&C cannot

– Parallel SAVLR finds near-optimal solutions even quicker

• The algorithm is generic and can be used to solve other 

complex problems in power systems and beyond

Thank you!


