
Machine Learning for Expediting Security Constraint Unit

Commitment Solution

Álinson S. Xavier 1 Feng Qiu 1 Shabbir Ahmed 2

1Argonne National Laboratory, Lemont, IL

2Georgia Institute of Technology, Atlanta, GA

FERC Technical Conference

June 26, 2019, Washington DC

Security Constrained Unit Commitment and Power Systems

• Unit commitment (UC)

I Generator scheduling and power output levels

• Security constrained UC (SCUC)

I Physical laws of power flows in transmission network (Kirchhoff’s Laws and Ohm’s

Laws)

I Overhead transmission line thermal limits

I Security requirement: N-1 contingency

• SCUC and power systems

I Electricity market clearning (day-ahead market)

I Reliability assessment

I System expansion

2 / 21

Demand for Computational Performance Improvement

• Day-ahead electricity market

I $400 billion electricity market

I Industry standard: MIP gap 0.1% within 30 minutes; ISO often terminates solve with a

large gap due to time limits

I Potential $200 million cost savings if MIP gap is reduced to 0.05%

• Computational performance improvement are needed for

I More accurate modeling of energy components, e.g., combined heat&power generators

I More accurate modeling of operations, e.g., smaller time periods

I Operations under uncertainty, e.g., stochastic UC

• Literature review

I Stronger formulations [Rajan et al. 05‘; Carrino & Arroyo 06‘; Ostrowsk et al. 12‘;

Atakan et al. 17‘; Gentile et al. 17‘; Morales-Espana et al. 15‘]

I Cutting planes [Lee et al. 04‘; Damcı-Kurt et al. 15‘;Ostrowski et al. 12‘]

I Decomposition [Ma & Shahidehpour 98‘; Feizollahi et al. 15‘; Kim et al. 18‘]

3 / 21

SCUC Application Setting: Routinely Solved

• SCUC is solved routinely
I Multiple times per day and all year around

I Day-ahead SCUC: once per day;
I Resource reliability and commitment: twice per day;
I Reliability assessment commitment: 24 times per day

I Data vary slightly iteration to iteration

I Same topology and same set of generators
I Slightly different net loads, cost curves

I “Patterns” of characteristics of optimal scheduling can be observed

I Volume SCUC data saved, e.g., 2-3 terabyte SCUC data at MISO each year

• Current practice: one-shot optimization

I Start each solve from scratch, dump all information when finished

4 / 21

Machine Learning for Solving Optimization Problems

• Early work using machine learning to solve SCUC

I Artificial neural networks to predict generator status [Sasaki et al, 92’;Z Ouyang &

Shahidehpour 92‘; Park 93‘; Huang 97‘]

I Not successful even on small instances with simplifications

• Machine learning for optimization

I Machine learning for branch-and-bound algorithms [Khalil et al. 16‘,16‘,17‘;Alvarez 16‘;

Lodi & Zarpellon 17‘;]

I Machine learning for combinatorial optimization [Baluja&Davies 97‘; Bojnordi & Ipek

16‘; Dai et al. 17‘]

• Our perspective

I Focus on a specific class of problems - Day-Ahead SCUC

I Routinely solved problems share great similarity

I Work within, instead of replace, existing optimization paradigm

5 / 21

Understanding Security Constrained Unit Commitment

minimize
∑
g∈G

cg(xg•, yg•) (1)

subject to (xg•, yg•) ∈ Gg ∀g ∈ G (2)

− F c
l ≤

∑
b∈B

δclb

∑
g∈Gb

ygt − dbt

 ≤ F c
l ∀c ∈ L ∪ {0}, l ∈ L, t ∈ T. (3)

xgt ∈ {0, 1} ∀g ∈ G, t ∈ T (4)

ygt ≥ 0 ∀g ∈ G, t ∈ T (5)

• Once xgt (gen. commit. var.) determined, ygt (dispatch) can be calculated efficiently

• Constraints (3) are necessary only when there are congestions on line l in scenario c in

time t
6 / 21

Day-Ahead SCUC
• Application setting

I Bids and offers submitted at the end of the day

I Usually 30 minutes time window is given to solve SCUC

• Data that do not change often
I Generator characteristics: ramping rates, minimum on/off time, capacity,

I Topology and transmission line thermal limits

• Data that change
I Generator cost curves, start-up costs
I Load

I Geographic distribution
I Peak load and load profile

• Learning schemes
I Study the past (or simulated) SCUC input data (i.e., only data that change) and

solutions

I Generate oracles that can give hints to MIP solvers to expedite next solve, based on

input data
7 / 21

Learning Violated Transmission Constraints

• Transmission constraints significantly impact computational performance; few of them

are actually needed

• Transmission oracle
I Predict which transmission constraints should be added to the relaxation and which

constraints can be safely omitted based on statistical data

• Transmission(security) constraints

−F c
l ≤

∑
b∈B

δclb

∑
g∈Gb

ygt − dbt

 ≤ F c
l .

• A vector of hints hl,c,t ∈ {ENFORCE, RELAX}, for l ∈ L, c ∈ L ∪ {0}, t ∈ T , indicating

whether the thermal limits of transmission line l, under contingency scenario c at time

t, should be enforced

• A simple prediction algorithm: hl,c,t = ENFORCE if the transmission constraint (l, c, t)

was necessary during the solution of at least k (e.g., 1%) percent of the training

samples.
8 / 21

Learning Initial Feasible Solutions

• High-quality initial feasible solutions are critical in closing the gap in SCUC

• Feasible solution oracle

I Quickly produce high-quality valid solutions for SCUC, based on historical data

• Instance-based learning

I Given instances I(pi) and their optimal solutions (xi, yi), and the test instance I(p̃)

I Output the integer part of solutions (i.e., xi) of the first k closest instances to p̃ with

regard to a predefined norm

• Feed k integer solutions to MIP solver as warm starts

I k = 10

• Suitable for online learning

9 / 21

Learning Affine Subspaces

• System operators learn patterns of optimal generator scheduling after years of work

• Affine subspace oracle

I Predict a list of hyperplanes (h1, h1
0), . . . , (hk, hk

0) such that, with very high likelyhood,

the optimal solution (x, y) of I(p̃) satisfies 〈hi, x〉 = hi
0, for i = 1, . . . , k

I Currently focus on the following hyperplanes:

xgt = 0,

xgt = 1,

xgt = xg,t+1

I More complicated hyperplanes

I xg,t generators of same buses
I xg,t generators of same type
I other patterns discovered in optimal scheduling

10 / 21

Learning Affine Subspaces

• Construct affine subspace oracle φ(h,h0) : Rn → {ADD, SKIP}
I Let (h, h0) ∈ H, and I(p1), . . . , I(ps) be training samples, and (x1, y1), . . . , (xs, ys) be

their respective optimal solutions

I zi = 1 if 〈h, xi〉 = h0, and zi = 0 otherwise

I z̄ =
∑
zi/s

I If z̄ ≤ 0.05 always return SKIP

I If z̄ ≥ 0.95 always return ADD

I Otherwise, train binary classifier θ(h,h0) and evaluate its accuracy using k-fold cross

validation.

I If accuracy ≥ 0.95, use the classifier. Otherwise, always return SKIP.

I Reduce feature dimension by only using (1) the peak system load, (2) the hourly system

loads, (3) the average production cost of generator g and (4) the average production

costs of the remaining generators

11 / 21

Experiment Settings and Instances
• Experiment settings

I Java, Python 3, using pandas and scikit-learn

I IBM ILOG CPLEX 12.8.0 as MIP solver

I Traning: Intel Xeon E5-2695v4, 36 cores, 128GB DDR4; testing: AMD Ryzen 7 1700, 8

cores, 16GB DDR4

• Test instances
I Adapted from MatPower [Zimmerman at el. 11‘]

Figure: Test Power System Instances

12 / 21

Training Data

• 300 instances for training, solved to optimality; 30 instances for testing

• Data generation
I Production and startup costs: uniform distribution

I Geographical load distribution: uniform distribution

I Peak system load and temporal load profile: Gaussian distribution from PJM hourly

data; Uniform distribution for peak load

0 5 10 15 20
Hour

40000

45000

50000

55000

D
em

an
d

(M
W

)

Figure: Sample of artificially generated load profiles.
13 / 21

A Benchmark Algorithm - Contingency Screening

• A contingency screening algorithm

I Add security constraints only when

they are violated

I Add iteratively until no violation of

security constraints

Figure: Contingency Screening Algorithm

• Compare our benchmark algorithm with

best literature results Tejada-Arango,

Sánchez-Martin, Ramos (2017)

Figure: Comparison with Other Screening Algorithm

14 / 21

Performance Evaluation

• Computational performance

Figure: Solution Time Figure: Speedups Over Benchmark Performance

15 / 21

Performance Evaluation

• Solution quality

Figure: Impact of machine-learning oracles on running-time and solution quality

16 / 21

Performance Evaluation

• Number of transmission

constraints

Figure: Transmission oracle performance
Figure: Precision and recall of variable-fixing oracle

17 / 21

Learning Enabled Operations (LEO)
• Existing way to run operational applications

I Valuable information is discarded after solve

I Optimal solutions, solver information (e.g., branch-and-bound trees)

• Learning from daily operations to gain knowledge and intelligence for smarter

operations and quicker responses to disturbances

Figure: Existing ways to run operation applications v.s. LEO

18 / 21

Conclusion and Future Research

• Summary:

I Machine-learning methods to accelerate solution of SCUC

I 12 times speedup on large-scale, realistic instances

I No negative impact on solution quality

I https://arxiv.org/abs/1902.01697

• Take-away

I Learning can be effective for routinely solved optimization problems

I More general AI framework for optimization

19 / 21

https://arxiv.org/abs/1902.01697

Acknowledgement

This work is supported by Argonne National Laboratory
Laboratory Directed Research and Development (LDRD) Swift Program

20 / 21

Thank You

