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Security Constrained Unit Commitment and Power Systems

e Unit commitment (UC)
» Generator scheduling and power output levels
e Security constrained UC (SCUC)
» Physical laws of power flows in transmission network (Kirchhoff’s Laws and Ohm’s
Laws)
» Overhead transmission line thermal limits
» Security requirement: N-1 contingency
e SCUC and power systems

» Electricity market clearning (day-ahead market)
» Reliability assessment

» System expansion
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Demand for Computational Performance Improvement

e Day-ahead electricity market
» $400 billion electricity market
» Industry standard: MIP gap 0.1% within 30 minutes; ISO often terminates solve with a
large gap due to time limits
» Potential $200 million cost savings if MIP gap is reduced to 0.05%
e Computational performance improvement are needed for
» More accurate modeling of energy components, e.g., combined heat&power generators
» More accurate modeling of operations, e.g., smaller time periods
» Operations under uncertainty, e.g., stochastic UC
e Literature review
» Stronger formulations [Rajan et al. 05%; Carrino & Arroyo 06‘; Ostrowsk et al. 12¢;
Atakan et al. 17¢; Gentile et al. 17‘; Morales-Espana et al. 15]
» Cutting planes [Lee et al. 04‘; Damci-Kurt et al. 15¢;Ostrowski et al. 12¢]
» Decomposition [Ma & Shahidehpour 98¢ Feizollahi et al. 15; Kim et al. 18]
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SCUC Application Setting: Routinely Solved

e SCUC is solved routinely
» Multiple times per day and all year around

» Day-ahead SCUC: once per day;
> Resource reliability and commitment: twice per day;
> Reliability assessment commitment: 24 times per day

» Data vary slightly iteration to iteration

> Same topology and same set of generators

> Slightly different net loads, cost curves

» “Patterns” of characteristics of optimal scheduling can be observed
» Volume SCUC data saved, e.g., 2-3 terabyte SCUC data at MISO each year

e Current practice: one-shot optimization

» Start each solve from scratch, dump all information when finished
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Machine Learning for Solving Optimization Problems

e Early work using machine learning to solve SCUC
» Artificial neural networks to predict generator status [Sasaki et al, 92';Z Ouyang &
Shahidehpour 92¢; Park 93‘; Huang 97|
» Not successful even on small instances with simplifications
e Machine learning for optimization
» Machine learning for branch-and-bound algorithms [Khalil et al. 16¢,16°,17‘;Alvarez 16¢;
Lodi & Zarpellon 17¢; |
» Machine learning for combinatorial optimization [Baluja&Davies 97‘; Bojnordi & Ipek
16 Dai et al. 17¢]
e Our perspective
» Focus on a specific class of problems - Day-Ahead SCUC
» Routinely solved problems share great similarity

» Work within, instead of replace, existing optimization paradigm
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Understanding Security Constrained Unit Commitment

minimize

subject to

Z ¢g(Tge, Yge)

geG

(wg07ygo) € gg Vg eG

—FE<> 0| Y yg—du | <Ff Vee LU{0}l€LteT.
beB geGy

zg € {0,1} Yge G,iteT

Ygt > 0 VgeG,teT

e Once x4 (gen. commit. var.) determined, y,; (dispatch) can be calculated efficiently

e Constraints (3) are necessary only when there are congestions on line [ in scenario ¢ in

time ¢
() ENERGY %
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Day-Ahead SCUC

Application setting

» Bids and offers submitted at the end of the day

» Usually 30 minutes time window is given to solve SCUC
Data that do not change often

» Generator characteristics: ramping rates, minimum on/off time, capacity,
» Topology and transmission line thermal limits
Data that change

» Generator cost curves, start-up costs
» Load

» Geographic distribution

» Peak load and load profile

e Learning schemes
» Study the past (or simulated) SCUC input data (i.e., only data that change) and
solutions
» Generate oracles that can give hints to MIP solvers to expedite next solve, based on

input data
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Learning Violated Transmission Constraints

e Transmission constraints significantly impact computational performance; few of them
are actually needed
e Transmission oracle
» Predict which transmission constraints should be added to the relaxation and which
constraints can be safely omitted based on statistical data

e Transmission(security) constraints

—FE <> 65 | Y vgr —due | < FF
beB geGy
e A vector of hints hy ., € {ENFORCE,RELAX}, for [ € L,c € LU{0},¢ € T, indicating
whether the thermal limits of transmission line [, under contingency scenario ¢ at time
t, should be enforced
o A simple prediction algorithm: h; ., = ENFORCE if the transmission constraint (I, ¢, t)
was necessary during the solution of at least k (e.g., 1%) percent of the training

mpl
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Learning Initial Feasible Solutions

High-quality initial feasible solutions are critical in closing the gap in SCUC
e Feasible solution oracle

» Quickly produce high-quality valid solutions for SCUC, based on historical data
e Instance-based learning

» Given instances I(p’) and their optimal solutions (z¢, ), and the test instance I(j)
» Output the integer part of solutions (i.e., z*) of the first &k closest instances to p with

regard to a predefined norm

Feed k integer solutions to MIP solver as warm starts
» k=10

Suitable for online learning
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Learning Affine Subspaces

e System operators learn patterns of optimal generator scheduling after years of work
e Affine subspace oracle

» Predict a list of hyperplanes (h', hy), ..., (h*, h§) such that, with very high likelyhood,
the optimal solution (x,%) of I(p) satisfies (h', ) = hi), for i =1,... k
» Currently focus on the following hyperplanes:

zgt =0,
Tgt =1,
Tgt = Tg,t+1
» More complicated hyperplanes

> x4t generators of same buses
> x4+ generators of same type

» other patterns discovered in optimal scheduling
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Learning Affine Subspaces

e Construct affine subspace oracle ¢ 5, : R — {ADD, SKIP}

>

(DENERGY 73

Let (h,ho) € H, and I(p'),...,I(p°) be training samples, and (z',3"),..., (z*,3°) be
their respective optimal solutions

Z' = 1if (h,2") = ho, and z* = 0 otherwise

z2=>37"/s

If Z < 0.05 always return SKIP

If Z > 0.95 always return ADD

Otherwise, train binary classifier 6 »,) and evaluate its accuracy using k-fold cross
validation.

If accuracy > 0.95, use the classifier. Otherwise, always return SKIP.

Reduce feature dimension by only using (1) the peak system load, (2) the hourly system
loads, (3) the average production cost of generator g and (4) the average production

costs of the remaining generators
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Experiment Settings and Instances

o Experiment settings
» Java, Python 3, using pandas and scikit-learn
» IBM ILOG CPLEX 12.8.0 as MIP solver
» Traning: Intel Xeon E5-2695v4, 36 cores, 128GB DDR4; testing: AMD Ryzen 7 1700, 8
cores, 16GB DDR4
e Test instances

» Adapted from MatPower [Zimmerman at el. 11¢]

Instance Buses  Units  Lines

casel1888rte 1,888 297 2,531
casel951irte 1,951 391 2,596
case2848rte 2,848 547 3,776
case3012wp 3,012 502 3,572
case3375wp 3,374 596 4,161
case6468rte 6,468 1,295 9,000
case6470rte 6,470 1,330 9,005
case649brte 6,495 1,372 9,019
case6515rte 6,515 1,388 9,037

Figure: Test Power System Instances
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Training Data

e 300 instances for training, solved to optimality; 30 instances for testing
e Data generation

» Production and startup costs: uniform distribution

» Geographical load distribution: uniform distribution

» Peak system load and temporal load profile: Gaussian distribution from PJM hourly
data; Uniform distribution for peak load

55000
50000

45000

Demand (MW)

40000

Figure: Sample of artificially generated load profiles.
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A Benchmark Algorithm - Contingency Screening

e A contingency screening algorithm

» Add security constraints only when e Compare our benchmark algorithm with
they are violated best literature results Tejada-Arango,
» Add iteratively until no violation of Sanchez-Martin, Ramos (2017)

security constraints

Instance Parameters Load _Ierations _Time per Rteration () Total Time () Obj Value
07 3 a2 126 535032935
s 4 64 1 257 s

Algorithm 1 Security-Constrained Unit Commitment 72 gap-0.10% ;s: : :i = izi z:;‘::; z;

1: Let LM be the set of monitored transmission lines 216 units o 0987 2 a0 | 80 542069262

2: Let LY be the set of transmission lines susceptible to disruption 0209 4 19 | 78 427305083

3: Create a relaxation of SCUC without any transmission constraints 0788 4 20 | 78 4148,955.87

4: Solve the current relaxation Average 68

5: Compute pre-contingency flow f° using ISF Speedup e

6: Compute post-contingency flow f* using LODE, v € LV nstance Parameters Load_iterations _Time per leration (5) Total Time (s) Obj value

7: Let 45, = max{Fm — f%,,0, f% — Fpn},Yv € LV U{0},m € LM 07 5 387 1934 535016306

8: Let ' = {(v,m) € (LY U{0}) x LM : 4%, > 0} be the violations 10 7 017

9: if I is empty then return 472 buses 1029 5 460

10: else 752 lines o o 1008 s a2

11:  Form € L™, keep in T only the pair (v,m) with highest 7%, Hounts o 2 20

12: Keep in T only the k pairs (v, ) having the highest v}, :ZZ z Zi

13: For every violation in I', add the corresponding cut to the relaxation
14: goto step 4

Average

Figure: Comparison with Other Screening Algorithm
Figure: Contingency Screening Algorithm
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Performance Evaluation

e Computational performance

In zero Bo zero
otriws 12 Dotriws
00 Dotrtaff Botriaff
. 10
E
Z a0 -~ s
k=] =
= g
3
= 200 & e
[
s 4l |
100
2
0
0 ‘
A d «© . xe
99“\@’% ‘bge\‘*’ ‘179%‘ o ‘53"\5&966& o 96‘ "\ﬁ‘ x@%ﬁe \q‘v“‘ q,gh“ \"?" 1“"" ORI S
@ o e PG
Figure: Solution Time Figure: Speedups Over Benchmark Performance
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Performance Evaluation

e Solution quality

zero tr+ws tr+aff
Instance Time (s) Gap (%) Time (s) Speedup Gap (%) Time (s) Speedup Gap (%)
casel888rte 28.6 0.09 12.3 2.3x 0.08 2.3 12.5x 0.06
casel951irte 32.8 0.10 22.9 1l.4x 0.09 3.8 8.6x 0.04
case2848rte 49.9 0.09 27.2 1.8x 0.09 5.3 9.3x 0.07
case3012wp 57.6 0.09 38.1 1.5x 0.09 7.8 7.4x 0.04
case3375wp 109.9 0.08 90.7 1.2x 0.09 16.5 6.7x 0.05

case6468rte 453.0 0.07 196.9 2.3x 0.09 62.9 7.2x 0.03
case6470rte 286.8 0.06 99.7 2.9x 0.09 36.4 7.9x 0.02
case6495rte 431.3 0.05 173.5 2.5% 0.08 80.5 5.4x 0.04
case6515rte 417.6 0.08 189.7 2.2x 0.08 86.2 4.8x 0.05

Figure: Impact of machine-learning oracles on running-time and solution quality
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Performance Evaluation

o Number of transmission

constraints Commitment Variables Performance
Instance Total Fix-one Fix-zero Free Recall (%) Precision (%)
zero trius casel888rte 7128.0 4180.5 1928.21019.3 85.4 99.6
Instance Constraints Iterations Constraints Iterations casel95irte 9384.0 4630.8 2770.6 1982.6 78.6 99.6
casel883zte 7 07 24.0 1.00 case2848rte 13128.0 6672.9 4182.6 2272.6 82.4 99.7
casel951irte 2.7 217 7.0 1.00 case3012wp 12048.0 7079.5 3089.0 1879.5 84.2 99.8
case2848rte 4.6 2.57 6.7 1.03 case3375wp 14304.0 8356.1 3294.9 2653.1 81.2 99.7
case3012wp g-(l) 2?3; ;(1)»8 i»gg case6468rte 31080.0 23268.2 2827.7 4984.1 83.9 99.9
case3375wp i . . .
caseba68rte 20.0 =00 e .00 case6470rte 31920.0 24317.5 2643.0 4959.4 84.4 99.9
case6470rte 115 4.13 17.0 1.00 case6495rte 32928.0 25597.3 2462.3 4868.3 85.1 99.9
case6495rte 17.5 5.60 28.7 1.00 case6515rte 33312.0 25471.9 2453.3 5386.8 83.8 99.9
case65156rte 14.1 4.27 16.9 1.00

. L Figure: Precision and recall of variable-fixing oracle
Figure: Transmission oracle performance
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Learning Enabled Operations (LEO)

e Existing way to run operational applications
» Valuable information is discarded after solve
» Optimal solutions, solver information (e.g., branch-and-bound trees)
e Learning from daily operations to gain knowledge and intelligence for smarter

operations and quicker responses to disturbances
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Conclusion and Future Research

e Summary:
» Machine-learning methods to accelerate solution of SCUC
» 12 times speedup on large-scale, realistic instances
» No negative impact on solution quality
https://arxiv.org/abs/1902.01697

v

e Take-away

» Learning can be effective for routinely solved optimization problems

» More general Al framework for optimization
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https://arxiv.org/abs/1902.01697
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