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Outline
% The key role of spatial and temporal interactions

¢ Engineering solutions in early architectures

***Challenges and opportunities in the changing industry
architectures: need for paradigm shift

***Change of paradigm; natural evolution from the early
architectures

*¢* Quantifiable notion of a ““better” architecture

*** SCADA and software—enablers of performance
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Temporal and spatial interactions across stakeholders
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Huge hidden inefficiencies

+* Reliability constraints:

* Limited use of clean resources in normal operations (large
stand-by/spinning reserve)

* Impossible to ensure resilient service (Puerto Rico)
**""Seams” constraints --poor spatial integration

* Small isolated grids require large reserve for reliable service
during equipment failures

* BPS interconnection built to share cost of reserve over large
area (Eastern Interconnection)
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Striking evidence of grid delivery inefficiencies

**1GW less used from Niagara on a hot summer day by NYC
than theoretically possible

**Estimated low penetration of solar in Puerto Rico grid
**Major spillage of wind power in Germany and Texas

“*Inability to integrate small DERs by the US distribution
companies; conservative hosting capacity”

‘*Threat of brown-outs in New England due to gas
shortages/retirement of nuclear plants

... most of these can be traced to the conservative grid proxy

limits (hard temporal and spatial constraints; intra- and inter
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Fundamental sources of electricity system inefficiencies

Ty

Fast varying
eneration
Il

-

\

AN

Inverter
controlled
solar PV

Responsive
demand

Slow varying

demand

Energy conversion losses in generation
and demand equipment

Non-thermal T&D losses

Not all power produced can be delivered
due to

-- temporal mismatch in energy
conversion rates

--T&D electrical maximum transfer

T&D thermal capacity under-utilized
(30%)

Thermal losses (2-6%) negligible

compared to non thermal losses. .
@i



How it used to work.. early architectures

***Both reliability and efficiency critically determined by the
integration of temporal and spatial interactions

“»*Efficiency through:

* Aggregate load predictions

* Cooperative spatial planning and operations for reliability

* Look ahead plant scheduling -- slow base load plants on (dirty, and clean)

**Inefficient management of uncertainties—proxy constraints

* Contingency (the worst case approach)
* Frequency and voltage regulation; stabilization
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Regional planning for reliability

4 Control Areas

\
Seam

Efficiency — MoU collaboration
Inefficiency—proxy limits
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CA-level generation scheduling: UC and ED

e Unit Commitment (UC): for long-term forecasted demand,
turn ON slow plants to supply base load; short-term turn
OFF (decommit) slow units only if necessary; turn ON fast
units given day or week ahead demand forecast

* Economic Dispatch (ED): given a mixture of energy
resources, schedule the resource output of fast individual

energy (modify output of slow only if/when necessary) so

Aamanﬂ
ED for

— S™:neration cost is minimized Present
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Decentralized CA-level operations
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More recent architectures

**NERC becomes NERO (mandatory reliability standards at
higher granularity)

“*Vertical unbundling (intra-CA seams)
***Deployment of wind/solar
**Demand response by large commercial and industrial loads

** Distributed demand response with small solar PVs, EVs, and
controllable appliances

*** Wholesale spot (short term) electricity markets
“*Lack of long-term feed-forward demand predictions
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NYCA—intra- CA area seams
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Maximum Power Transfer Problem
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Root-cause of on-going industry challenges

“*Inconsistent (unaligned) temporal and spatial integration
dictated by

* Mandatory reliability standards

* Sub-objectives of stakeholders

 SCADA design

* Planning/operations/market rules

» Software tools used by ISOs/TSOs/DSOs/DERMS/stakeholders
 DSOs/DERMS/stakeholders participation work in progress

ﬂ-'§6’ i cos Carnegie Mellon (¥
T



On-going industry efforts

‘*Top down CA-level architectures
e Software for multi-temporal centralized CA-level UC and ED
 Still conservative grid proxy constraints; " reliability related”

* No systematic solutions for integrating spatial seems (intra-
and inter-CAs)

**Computational complexity challenges (FERC conferences 1-10)
“*Pricing for incentivizing temporal and spatial integration?
“**Probably impossible to implement to high level of granularity
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Paradigm shift—from hard proxy constraints to
interactive distributed decision making

**Both seams and inter-temporal dependencies should be managed
at value and reliably

s Carefully defined derivatives must be supported by software for
bidding and market clearing; sufficient to define a triplet (E_T; P;
dQ/dT)- natural extension of today’s ACE

**Voltage and frequency regulation results of power balancing in this
space; not derivatives

s*Data-enabled distributed risk management for reliability and
resliliency
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Single optimization subject to Reconciling tradeoffs
constraints

Schedule supply to meet given demand Schedule supply to meet demand (both supply
and demand have costs assigned)

Provide electricity at a predefined tariff Provide electricity at QoS determined by the
customers willingness to pay

Produce energy subject to a predefined CO, Produce amount of energy determined by the

constraint willingness to pay for CO, effects

Schedule supply and demand subject to Schedule supply, demand and transmission

transmission congestion capacity (supply, demand and transmission
costs assigned)

Build storage to balance supply and demand Build storage according to customers
willingness to pay for being connected to a
stable grid

Build specific type of primary energy source Build specific type of energy source for well-
to meet long-term customer needs defined long-term customer needs, including
their willingness to pay for long-term service,
and its attributes

Build new transmission lines for forecast Build new transmission lines to serve
demand customers according to their ex ante (longer-
term) contracts for service
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New end-to-end SCADA; data-enabled protocols
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Spatial and temporal integration—Dynamic
Monitoring and Decision Systems (DyMonDS)

**Multi-layered distributed decision making with minimal
coordination
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Quantifiable measures of improving”

‘*Component level—measured in terms of potential to do real
work and create less waste (hardware; smarts—power
electronics control; automation; predictions; learning)

“**System level--- end-to-end SCADA "“better” only if supported
by the right IT signals which align technical, economic,
regulatory protocols

* Triplet of (E_T,P,dQ/dT) technical signal

* Triplet of bids for the same technical product (derivatives)

* Regulation of protocols to align technical and economic signals
**INTERACTIVE FRAMEWORK BASED ON PROTOCOLS
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Proposed principles for new SCADA

“*First principle— generalize today’s AGC standards on Balancing
Authorities (BAs) in terms of area control error (ACE) into
standards/protocols for intelligent Balancing Authorities (iBAs).
New common variables characterizing input-output interactions
between iBAs. These extensions set protocols for storage; inverter
controlled PVs; demand DERs; conventional generators; and T&D.

**Second principle—an “optimal” SEES should evolve through

managing in a feedforward/feedback spatial and temporal
Interactions

“*Third principle design/control of components and their

interactions according to constructal law (Bejan)
ﬂ-'§6’ M bes Carnegie Mellon >



Reactive power characterizing inefficiency
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MAJOR NEED FOR NEXT GENERATION SOFTWARE

**COMPLEXITY EMBEDDED IN THE LOWER LAYERS FOR
ENABLING “'BETTER” SPECIFICATIONS (E_T,P,dQ/dT) —
automation, smarts, ML, predictions; storage/EV integration

“*AGGREGATION OVER TIME AND STAKEHOLDERS MANAGING
INTERACTIONS THROUGH MINIMAL COORDINATION

“*AMPLE EVIDENCE OF ENHANCED RELIABILITY, EFFICIENCY AND
RESILIENCY
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General distributed agent decision making
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_Distributed decisi~~ ~kers
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Feeder-level decision making
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Next Generation SCADA

“*Supports two (multi)-level decision making in the changing
electric energy industry; it lends itself to non-convex dual
optimization solutions to spatial and temporal integration

***Natural alignment of economic incentives, efficient scheduling
and end user choice

“**Can be used for establishing standards protocols and giving
the right incentives

*** Next step— distributed management of uncertainty

“**Lower layer specifications must be defined in terms of
common technology-agnostic variables

£575 & Wip o Carnegie Mellon ¥
D EEEEOEREBERERREBR



Next steps: Can begin to quantify and innovate at value
**Large scale technologies vs. large number of small scale technologies
*»*Distributed choice vs. coordination
s Efficiency vs reliability/resiliency
***Best practices vs. Innovative solutions
**Predictable vs. intermittent

*Component level vs. balancing authorities vs system level
standardization

*»*Storage vs. smarts
*»*Security vs. open access systems
***Climate vs. cost
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