A Configuration Based Pumped-storage Hydro Unit Model in MISO Day-ahead Market

Bing Huang, Ross Baldick Department of Electrical and Computer Engineering The University of Texas at Austin

Yonghong Chen Electricity Market Development Midcontinent Independent System Operator

June 26, 2019

Outline

Background

Formulation

Case Study

Conclusion and Future Work

Outline

Background

Formulation

Case Study

Conclusion and Future Work

Background

Pumped-Storage Hydro Unit (PSHU)

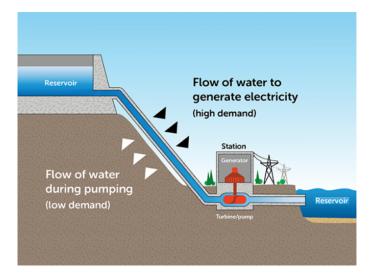


Figure: A Pumped-Storage Hydro Unit [Kenning, 2017]

Background

Storage Technologies and Applications

Table: Storage Technologies and Applications [Barton et al., 2004]

Full Power Duration of Storage	Applications of Storage	Compressed Air Energy Storage (CAES)	Pumped-storage Hydro	Battery Technologies	Flywheel
3 Days	Weekly smoothing of loads and most weather variations	Y	Y		
8 Hours	Daily load cycle, PV, Wind, transmission line repair	Y	Y	Y	
2 Hours	Peak load lopping, standing reserve, wind power smoothing	Y	Y	Y	
20 Minutes	Spinning reserve, wind power smoothing, clouds on PV	Y	Y	Y	Y
3 Minutes	Spinning reserve, wind power smoothing of gusts		Y	Y	Y
20 Seconds	Line or local faults, voltage and frequency control, governor controlled generation			Y	Y

Motivation

- Pumped-storage hydro unit (PSHU) can provide a wide range of services and such services are substantially important to the system operation.
- Under current MISO practice, pumped-storage hydro unit owners specify pump/generate periods and offer costs/prices.
- As a market participant with limited information, PSHUs' forecast may be poor.
- PSHUs' decisions are **sub-optimal** to the system welfare.
- The pump/generate decisions made based on the forecasts may impair profits.
- The first step is to include the PSHUs more fully into MISO's **day-ahead market** clearing process solving unit commitment (UC) and economic dispatch (ED) problems.

Literature Review

- Models of the operation of a PSHU with continuous variables.
 - Two continuous variables for a pump and a generator and state of charge constraints [Castronuovo and Lopes, 2004] [Duque et al., 2011].
 - A variable is introduced to represent the energy spilled from the pumped-storage hydro system [Brown et al., 2008].
 - A single variable represent generating (positive) and pumping (negative) [Ni et al., 2004].
- Models of the operation of the PSHU with integer variables.
 - An integer variable indicates the total number of turbines that are in pumping mode among the N identical turbines [Garcia-Gonzalez et al., 2008].
 - Binary variables (pump/generate) are introduced to each of the the PSHU in the system [Jiang et al., 2012].
 - Three modes, pumping, generating and idle are modeled for each of the PSHUs [Khodayar et al., 2013].

Conclusion of the Literature

- Pumped-storage hydro model has been studied for a stand alone system [Ma et al., 2015] or a market participant [Ma et al., 2014].
- The model of a PSHU in the day-ahead unit commitment problem remained obscure.
- Three modes are necessary for day-ahead market schedules, so there should be an "alloff" or "offline" mode specified.
- There is typically a minimum output for the generating mode.
- Pump is typically block loaded or with minimum pumping limit.
- Constantly charging or discharging the pumped-storage hydro unit is not always the best strategy for system operation.

Outline

Background

Formulation

Case Study

Conclusion and Future Work

Operation Modes

• Configuration based model for combined cycle gas unit [Chen and Wang, 2017] is applied.

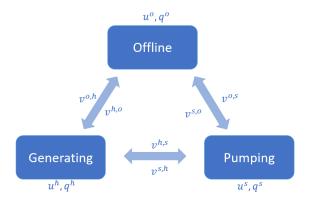


Figure: Mode transition diagram of a PSHU in two consecutive time intervals.

- Let q^h be the output of the generate mode and let q^s be the output of the pump mode.
- Let \boldsymbol{u} be the unit commitment of each mode and let \boldsymbol{v} be the transition between modes. Formulation

Formulation

The system operation costs are shown in (1).

$$\min_{q,u} \sum_{g \in G_{sh}} \sum_{t \in T} f_{g,t}^h - C_{g,t}^s q_{g,t}^s + \sum_{g \in G} \sum_{t \in T} C(q_{g,t})$$
(1)

Energy balance constraint is shown in (2).

$$\sum_{g \in G} q_{g,t} + \sum_{g \in G_{sh}} q_{g,t}^h = D_t + \sum_{g \in G_{sh}} q_{g,t}^s \ \forall t \in T$$

$$\tag{2}$$

The output of a PSHU $q_{g,t}^h$ and $q_{g,t}^s$ are constrained by their capacities and the amount of energy stored in the reservoir $e_{r,t}$.

$$\underline{Q}_{g}^{h}u_{g,t}^{h} \leq q_{g,t}^{h} \ \forall g \in G_{sh} \ \forall t \in T$$
(3)

$$q_{g,t}^{h} \leq \overline{Q}_{g}^{h} u_{g,t}^{h} \quad q_{g,t}^{h} \leq \eta_{g}^{h} e_{r,t} \quad \forall g \in G_{sh} \quad \forall r \in R \quad \forall t \in T$$

$$\tag{4}$$

$$\underline{Q}_{g}^{s} u_{gt}^{s} \leq q_{g,t}^{s} \leq u_{g,t}^{s} \overline{Q}_{g}^{s} \quad \forall g \in G_{sh} \quad \forall t \in T$$
(5)

Unit Commitment and Transition Logic [Dai et al., 2018]

The first constraint guarantees that the configurations are mutually exclusive:

$$\sum_{y \in \mathcal{Y}} u_{g,t}^y = 1, \, \forall g, \, \forall t.$$
(6)

where ${\mathcal Y}$ is the set of modes in a pumped storage unit.

The second constraint links on/off variables with transition variables:

$$u_{g,t}^{y} - u_{g,t-1}^{y} = \sum_{\substack{y' \in \mathcal{M}^{T,y} \\ \text{Entering State } y \text{ at } t}} v_{g,t}^{y'y} - \sum_{\substack{y' \in \mathcal{M}^{F,y} \\ \text{Leaving State } y \text{ at } t}} v_{g,t}^{yy'}, \forall g, \forall t, \forall y.$$

$$(7)$$

where $\mathcal{M}^{F,y}$ is the set of reachable configurations from y, and $\mathcal{M}^{T,y}$ is the set of reachable configurations to y.

At most one transition per interval:

$$\sum_{y' \in \mathcal{M}} v_{g,t}^{yy'} \le 1, \, \forall g, \forall t.$$
(8)

where ${\cal M}$ is the set of all ordered pairs of states correspond to feasible transitions.

y

Storage Energy Balance and State of Charge

$$e_{r,t+1} = e_{r,t} + \sum_{g \in G_{sh,r}} \eta_g^s q_{g,t}^s - \sum_{g \in G_{sh,r}} \frac{q_{g,t}^h}{\eta_g^h} \quad \forall r \in R \quad \forall t \in T$$

$$\tag{9}$$

$$e_{r,1} = E_{r,1} \quad \forall r \in R \tag{10}$$

$$e_{r,T+1} = E_{r,T+1} \quad \forall r \in R \tag{11}$$

$$\underline{E_r} \le e_{r,t} \le \overline{E_r} \quad \forall r \in R \quad \forall t \in T$$
(12)

where η_g^h and η_g^s are the efficiencies of generating and pumping indicating energy losses at each mode. Energy stored in the reservoir r at time t is $e_{r,t}$ and it is constrained by the state of charges and the capacity of the reservoir [Castronuovo and Lopes, 2004]-[Garcia-Gonzalez et al., 2008].

Outline

Background

Formulation

Case Study

Conclusion and Future Work

Case Study of Two PSHU Turbines

- Day-ahead UC and ED problems are solved for a 24 hours net-load scenario.
- Reserve requirements ignored.
- Ramp constraints ignored.
- Transmission security constraints ignored.
- The PSHU has two turbines that share a same reservoir. Pump is block loaded.
- Maintenance and operation costs of the PSHU is ignored. Profits = income from generating mode price paid for pumping mode.

Unit Mode	Cost/Price \$	$\frac{\underline{q}^m}{MW}$	\overline{q}^m MW	η_g^m
1: PSHU1 Pump	24	200	200	0.9
1: PSHU1 Gen	26	100	200	0.9
2: PSHU2 Pump	24	200	200	0.9
2: PSHU2 Gen	26	100	200	0.9
3: Thermal Gen 1	30	0	600	NA
4: Thermal Gen 2	20	0	300	NA
5: Thermal Gen 3	15	0	500	NA

Table: Units

Example to Illustrate Current Practice in MISO

- PSHU owners offer opportunity costs for generation mode and bid prices for pump mode.
- State of charges of the reservoir are not enforced.
- The PSHU owner determines the pump/generate window.
- Pump window: 0 6 AM; Generate window: 7 AM 11 PM.
- Maximum Daily Generation constraint is applied on PSHU for the generate mode.
- Although state of charges are not represented in the clearing algorithm, the PSHU must stop pumping when the reservoir is full.

Reservoir	$\frac{E_r}{MW}$ h	$\overline{E_r}$ MWh	$E_{r,1}$ MWh	$E_{r,T+1}$ MWh
Reservoir	1000	3500	2600	2600

Table: Reservoir

Economic Dispatch Results with Current Practice

• Net-load = system load - renewable energy (e.g. solar) not including PSHU outputs.

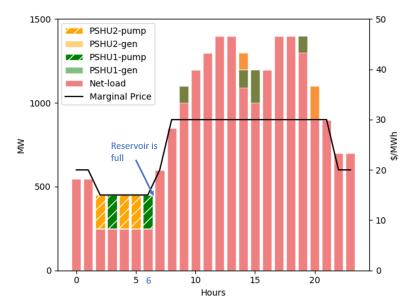
Data for Proposed Model

Unit Mode	Cost/Price	q^m	\overline{q}^m	η_q^m
Unit Mode	\$	ΜW	MW	5
1: PSHU1 Pump	0	200	200	0.9
1: PSHU1 Gen	0	100	200	0.9
2: PSHU2 Pump	0	200	200	0.9
2: PSHU2 Gen	0	100	200	0.9
3: Thermal Gen 1	30	0	600	NA
4: Thermal Gen 2	20	0	300	NA
5: Thermal Gen 3	15	0	500	NA

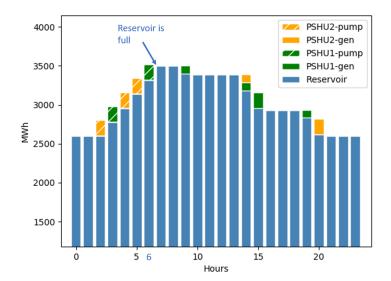
Table: Units

Table: Reservoir

Reservoir	$\frac{E_r}{MW}$ h	$\overline{E_r}$ MWh	$E_{r,1}$ MWh	$E_{r,T+1}$ MWh
Reservoir	1000	3500	2600	2600


Remove Generation Costs and Pump Prices of PSHUs in Objective

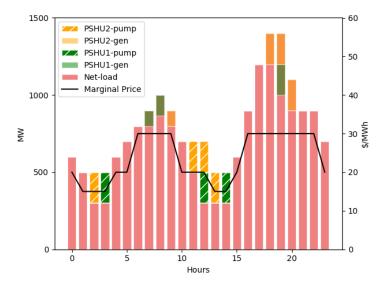
$$\min_{p,u} \sum_{g \in G_{sh}} \sum_{t \in T} f_{gt}^{h} - C_{gt}^{s} q_{g,t}^{s} + \sum_{g \in G} \sum_{t \in T} C(q_{gt})$$


$$\sum_{g \in G} q_{gt} + \sum_{g \in G_{sh}} q_{gt}^{h} = D_t + \sum_{g \in G_{sh}} q_{gt}^{s} \quad \forall t \in T$$
(2)

- The objective doesn't contain costs or bid prices from PSHUs.
- The value of pumping and generation of a PSHU comes from the energy balance equation.

Economic Dispatch Results with Proposed Model

State of Charges at Reservoir


Generation Costs and PSHU Profits

- PSHU pumps and generates the same amount but at different times from the two approaches.
- In current MISO practice, PSHUs are dispatched according to the comparison of their offer/bid to the system generation costs.
- In the proposed model, because of the state of charge constraints, the PSHUs are positioned such that the system costs are reduced the most.
- The profits of PSHU owner in the current practice varies from their offer/bid. But the profits given by the proposed model is the maximum they can get.

	Current Practice	Proposed Model
	\$	\$
PSHU Profits	5,300	9,300
System Costs	429,200	426,461

Table: PSHU Owner Profits and Social Welfare

A Different Scenario with Proposed Model

Outline

Background

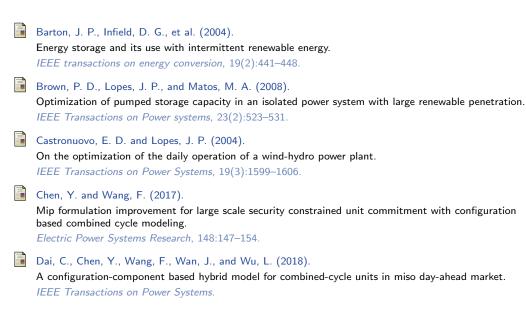
Formulation

Case Study

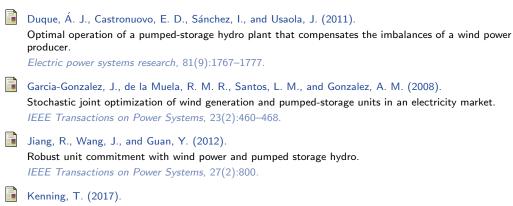
Conclusion and Future Work

Conclusion and Future Work

Conclusion and Future Work


Conclusion

- A configuration based three modes pumped-storage hydro unit model in the day-ahead market is presented.
- A numerical study is presented with two identical turbines sharing a reservoir.
- The proposed model is compared with current MISO practice showing differences at unit dispatches and benefits in terms of system generation costs and PSHU owner's profits.
- Flexible operations of the PSHUs with the proposed model are demonstrated with examples. **Future Work**
- Computational case study with MISO system is ongoing.
- Use an integer variable to represent the status of a multi-turbine PSHU.



References I

References II

https://www.energy-storage.news/news/energyaustralia-ponders-worlds-largest-seawater-pumped-hydro-energy-storage.

References III

Khodayar, M. E., Shahidehpour, M., and Wu, L. (2013).

Enhancing the dispatchability of variable wind generation by coordination with pumped-storage hydro units in stochastic power systems.

IEEE Transactions on Power Systems, 28(3):2808–2818.

Ma, T., Yang, H., Lu, L., and Peng, J. (2014).

Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in hong kong.

Renewable energy, 69:7-15.

Ma, T., Yang, H., Lu, L., and Peng, J. (2015).

Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization.

Applied energy, 137:649-659.

Ni, E., Luh, P. B., and Rourke, S. (2004).

Optimal integrated generation bidding and scheduling with risk management under a deregulated power market.

IEEE Transactions on Power Systems, 19(1):600-609.