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Pumped-Storage Hydro Unit (PSHU)

Figure: A Pumped-Storage Hydro Unit [Kenning, 2017]
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Storage Technologies and Applications

Table: Storage Technologies and Applications [Barton et al., 2004]

Full Power
Duration

of Storage

Applications
of Storage

Compressed Air
Energy Storage

(CAES)

Pumped-storage
Hydro

Battery
Technologies

Flywheel

3 Days
Weekly smoothing of loads

and most weather variations
Y Y

8 Hours
Daily load cycle, PV, Wind,

transmission line repair
Y Y Y

2 Hours
Peak load lopping,
standing reserve,

wind power smoothing
Y Y Y

20 Minutes
Spinning reserve,

wind power smoothing,
clouds on PV

Y Y Y Y

3 Minutes
Spinning reserve,

wind power smoothing of gusts
Y Y Y

20 Seconds
Line or local faults,

voltage and frequency control,
governor controlled generation

Y Y
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Motivation

• Pumped-storage hydro unit (PSHU) can provide a wide range of services and such services
are substantially important to the system operation.

• Under current MISO practice, pumped-storage hydro unit owners specify pump/generate
periods and offer costs/prices.

• As a market participant with limited information, PSHUs’ forecast may be poor.
• PSHUs’ decisions are sub-optimal to the system welfare.
• The pump/generate decisions made based on the forecasts may impair profits.
• The first step is to include the PSHUs more fully into MISO’s day-ahead market clearing

process – solving unit commitment (UC) and economic dispatch (ED) problems.
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Literature Review

• Models of the operation of a PSHU with continuous variables.

– Two continuous variables for a pump and a generator and state of charge constraints
[Castronuovo and Lopes, 2004] [Duque et al., 2011].

– A variable is introduced to represent the energy spilled from the pumped-storage hydro
system [Brown et al., 2008].

– A single variable represent generating (positive) and pumping (negative) [Ni et al., 2004].

• Models of the operation of the PSHU with integer variables.

– An integer variable indicates the total number of turbines that are in pumping mode among
the N identical turbines [Garcia-Gonzalez et al., 2008].

– Binary variables (pump/generate) are introduced to each of the the PSHU in the system
[Jiang et al., 2012].

– Three modes, pumping, generating and idle are modeled for each of the PSHUs
[Khodayar et al., 2013].

Background 7



Conclusion of the Literature

• Pumped-storage hydro model has been studied for a stand alone system [Ma et al., 2015] or a
market participant [Ma et al., 2014].

• The model of a PSHU in the day-ahead unit commitment problem remained obscure.
• Three modes are necessary for day-ahead market schedules, so there should be an “alloff” or

“offline” mode specified.

– There is typically a minimum output for the generating mode.
– Pump is typically block loaded or with minimum pumping limit.
– Constantly charging or discharging the pumped-storage hydro unit is not always the best

strategy for system operation.
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Operation Modes

• Configuration based model for combined cycle gas unit [Chen and Wang, 2017] is applied.

Figure: Mode transition diagram of a PSHU in two consecutive time intervals.

• Let qh be the output of the generate mode and let qs be the output of the pump mode.
• Let u be the unit commitment of each mode and let v be the transition between modes.
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Formulation

The system operation costs are shown in (1).

min
q,u

∑
g∈Gsh

∑
t∈T

fhg,t − Cs
g,tq

s
g,t +

∑
g∈G

∑
t∈T

C(qg,t) (1)

Energy balance constraint is shown in (2).∑
g∈G

qg,t +
∑

g∈Gsh

qhg,t = Dt +
∑

g∈Gsh

qsg,t ∀t ∈ T (2)

The output of a PSHU qhg,t and qsg,t are constrained by their capacities and the amount of
energy stored in the reservoir er,t.

Qh

g
uhg,t ≤ qhg,t ∀g ∈ Gsh ∀t ∈ T (3)

qhg,t ≤ Q
h

gu
h
g,t qhg,t ≤ ηhg er,t ∀g ∈ Gsh ∀r ∈ R ∀t ∈ T (4)

Qs

g
usgt ≤ qsg,t ≤ usg,tQ

s

g ∀g ∈ Gsh ∀t ∈ T (5)
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Unit Commitment and Transition Logic [Dai et al., 2018]
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Storage Energy Balance and State of Charge

er,t+1 = er,t +
∑

g∈Gsh,r

ηsgq
s
g,t −

∑
g∈Gsh,r

qhg,t
ηhg

∀r ∈ R ∀t ∈ T (9)

er,1 = Er,1 ∀r ∈ R (10)

er,T+1 = Er,T+1 ∀r ∈ R (11)

Er ≤ er,t ≤ Er ∀r ∈ R ∀t ∈ T (12)

where ηhg and ηsg are the efficiencies of generating and pumping indicating energy losses at each
mode. Energy stored in the reservoir r at time t is er,t and it is constrained by the state of
charges and the capacity of the reservoir
[Castronuovo and Lopes, 2004]-[Garcia-Gonzalez et al., 2008].
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Case Study of Two PSHU Turbines

• Day-ahead UC and ED problems are solved for a 24 hours net-load scenario.
• Reserve requirements ignored.
• Ramp constraints ignored.
• Transmission security constraints ignored.
• The PSHU has two turbines that share a same reservoir. Pump is block loaded.
• Maintenance and operation costs of the PSHU is ignored. Profits = income from generating

mode - price paid for pumping mode.

Table: Units

Unit Mode
Cost/Price qm qm ηmg

$ MW MW
1: PSHU1 Pump 24 200 200 0.9
1: PSHU1 Gen 26 100 200 0.9
2: PSHU2 Pump 24 200 200 0.9
2: PSHU2 Gen 26 100 200 0.9
3: Thermal Gen 1 30 0 600 NA
4: Thermal Gen 2 20 0 300 NA
5: Thermal Gen 3 15 0 500 NA

Case Study 15



Example to Illustrate Current Practice in MISO

• PSHU owners offer opportunity costs for generation mode and bid prices for pump mode.
• State of charges of the reservoir are not enforced.
• The PSHU owner determines the pump/generate window.
• Pump window: 0 - 6 AM; Generate window: 7 AM - 11 PM.
• Maximum Daily Generation constraint is applied on PSHU for the generate mode.
• Although state of charges are not represented in the clearing algorithm, the PSHU must stop

pumping when the reservoir is full.

Table: Reservoir

Reservoir
Er Er Er,1 Er,T+1

MWh MWh MWh MWh
Reservoir 1000 3500 2600 2600
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Economic Dispatch Results with Current Practice

• Net-load = system load - renewable energy (e.g. solar) not including PSHU outputs.
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Data for Proposed Model

Table: Units

Unit Mode
Cost/Price qm qm ηmg

$ MW MW
1: PSHU1 Pump 0 200 200 0.9
1: PSHU1 Gen 0 100 200 0.9
2: PSHU2 Pump 0 200 200 0.9
2: PSHU2 Gen 0 100 200 0.9
3: Thermal Gen 1 30 0 600 NA
4: Thermal Gen 2 20 0 300 NA
5: Thermal Gen 3 15 0 500 NA

Table: Reservoir

Reservoir
Er Er Er,1 Er,T+1

MWh MWh MWh MWh
Reservoir 1000 3500 2600 2600
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Remove Generation Costs and Pump Prices of PSHUs in Objective

min
p,u

���
���

∑
g∈Gsh

∑
t∈T

fhgt����−Cs
gtq

s
g,t +

∑
g∈G

∑
t∈T

C(qgt) (1’)

∑
g∈G

qgt +
∑

g∈Gsh

qhgt = Dt +
∑

g∈Gsh

qsgt ∀t ∈ T (2)

• The objective doesn’t contain costs or bid prices from PSHUs.
• The value of pumping and generation of a PSHU comes from the energy balance equation.
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Economic Dispatch Results with Proposed Model
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State of Charges at Reservoir
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Generation Costs and PSHU Profits

• PSHU pumps and generates the same amount but at different times from the two approaches.
• In current MISO practice, PSHUs are dispatched according to the comparison of their

offer/bid to the system generation costs.
• In the proposed model, because of the state of charge constraints, the PSHUs are positioned

such that the system costs are reduced the most.
• The profits of PSHU owner in the current practice varies from their offer/bid. But the profits

given by the proposed model is the maximum they can get.

Table: PSHU Owner Profits and Social Welfare

Current Practice Proposed Model
$ $

PSHU Profits 5,300 9,300
System Costs 429,200 426,461
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A Different Scenario with Proposed Model
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Conclusion and Future Work

Conclusion

• A configuration based three modes pumped-storage hydro unit model in the day-ahead
market is presented.

• A numerical study is presented with two identical turbines sharing a reservoir.
• The proposed model is compared with current MISO practice showing differences at unit

dispatches and benefits in terms of system generation costs and PSHU owner’s profits.
• Flexible operations of the PSHUs with the proposed model are demonstrated with examples.

Future Work

• Computational case study with MISO system is ongoing.
• Use an integer variable to represent the status of a multi-turbine PSHU.
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