
Fast evaluation of security 
constraints in a security 

constrained unit commitment 
algorithm

Jesse Holzer1 (presenter),

Yonghong Chen2, Feng Pan1,

Ed Rothberg3, Arun Veeramany 1

1PNNL, 2MISO, 3Gurobi

FERC Technical Conference

June 26, 2019



2

Security constraint evaluation
Background in HIPPO

• HIPPO project – High Performance Computing for Power Grid Optimization

 3 year funding from ARPA-E

 PNNL, MISO, GE, U. Tenn., U. Fla.

 Goal 10x speedup over current GE method for SCUC in MISO DA market

• Current method:

 SCUC MIP model with a small set of SCs – watchlist

 Fix commitment variables

 Evaluate remaining SCs on the dispatch solution

 If any violations, add constraints and reoptimize dispatch – LP only

• Evaluation of SCs is key



3

Security constraint evaluation
Motivation for new method

• Current SC evaluation method is slow
 ~10 minutes for 50K buses, 1K ctgs, 10K monitored branches, 36 time periods
 Probably not optimized to our context – DC model, PGen bounds ignored in reaction to 

imbalance due to outages
 Difficult to use to benchmark HIPPO SCUC MIP algorithms
 Impractical to use inside SCUC algorithm – SCUC should be ~20 minutes
 Difficult to make changes for use in HIPPO – coded in C, vs HIPPO in Python
 Potential gain from using SC evaluation inside SCUC algorithm – optimize commitment 

decisions against all SCs
 We can do better!

• New SC evaluation method in HIPPO
 Coded in Python with open source linear algebra libraries
 Use Sherman-Morrison-Woodbury formula to treat contingencies, instead of partial 

refactorization used by current method
 Much faster – 5-20 seconds vs 10 minutes
 Enables SC evaluation within SCUC algorithm



4

SCUC formulation
Highlighting security constraints

• Minimize
 F(X,Y)

• Subject to
 (X,Y) in G
 B Y ≤ H

• X – generator commitment schedules

• Y – power injections

• B Y ≤ H – security constraints
 Flow limit on every monitored line in the base case and every security contingency in each 

time period

• Initial MIP model may have a very small subset of the security constraints – a 
watchlist – but all need to be checked and satisfied by reported solution
 1K ctgs, 10K monitored branches, 36 time periods, 360M total linear inequalities
 2K injection nodes, 720B nonzeros
 Watchlist ~200 constraints per time period



5

Security constraint formulation – base case

• Base case branch flows are:

 R = - ((C MT Z) (A-1 E)) Y

• Where

 Y – pnode injections

 E – convert pnode injections to bus injections

 A – bus admittance matrix

 Z – zero out reference bus angle

 M – bus-branch incidence matrix

 C – monitored branch admittance

 R – monitored branch flows

• We use a Cholesky factorization for A-1



6

Security constraint formulation – contingencies

• Contingency k admittance matrix is a rank sk update of base case
 Ak = A + Mk Ck Mk

T

• Some SC solvers use a partial refactorization technique to undo some pivots of a 
Cholesky factorization of A, then do some new pivots, to obtain a factorization of 
Ak. Same technique to move to the next contingency.

• We use the Sherman-Morrison-Woodbury formula:
 Ak

-1 = A-1 – Wk Vk
-1 Wk

T

• Wk has sk columns, Vk is sk-by-sk
 Wk = A-1 Mk

 Vk = Ck
-1 + Mk

T Wk

• Then
 Rk = - (((C MT) Z) (A-1 E)) Y + (((C MT) Z) Wk) ((Vk

-1 (Wk
T E)) Y)

• This method can also handle bus outages and restoration of power imbalance in a 
contingency by prescribed participation factors. Both of these are low rank linear 
operators.



7

Performance features

• Precompute as much as possible, i.e. before calling SC evaluation on any particular 
dispatch vector. Minimize SC evaluation time.
 Cholesky factorizations
 Low rank factors

• Optimize use of sparse and dense matrices. Dense multiplication can be faster with low 
rank matrices.

• Compute only the most violated contingency for each monitored branch.

• After evaluating base case term and contingency term, Rk need not be computed for most 
branches

• Optimize order of multiplication operations to work with small matrices

• Pre-allocate work vectors during startup for computation in place during solve, i.e. without 
reallocating memory.

• Compute base case sensitivity matrix in startup. ~10% of startup time.

• Treat all contingencies of the same rank in a single matrix computation, rather than a loop 
over contingencies. Still need to loop over ranks. There are not many different ranks, ~30.



8

Computational results
Example with current SC evaluation method

• Case 105

 SCUC to 0.1%, 791s

 SC evaluation 812s

 SCUC to 0.1%, 797s

• SC evaluation is slow



9

Computational results
New method startup time

• Compute factorizations (cholesky, low rank) in startup phase

• Solve phase: given injections Y, evaluate flows R, determine SC violations.

• Need to build an SC evaluator for each of 36 time periods. These can be in parallel, but we do not want to use too many 
resources

• Any calls to solve must wait until startup is complete.

• Future work: build only 1 SC evaluator, use low rank perturbation idea to handle differences in base case admittance 
matrix between each time period and a static matrix

• Startup time is manageable, and note very fast solve time.



10

SCUC solution methods starting with a small 
initial set of SCs in the MIP model

• Method 1 (ED-SC iteration)
 Solve SCUC to 0.1% mipgap for UC solution X and dispatch solution Y. Fix X.
 Repeat:

 Evaluate SCs on Y. If no new SC violations, stop

 Add violated SCs and reoptimize for dispatch Y

• Method 2 (UC-SC-SQ sequential iteration)
 Solve SCUC to 0.1% for (X,Y).
 Repeat:

 Evaluate SCs. If no new SC violations, stop

 Add violated SCs and reoptimize for (X,Y). New MIP solve with MIP start from previous X

• Method 3 (UC-SC-CB callback)
 Solve SCUC to 0.1% for (X,Y) with a callback
 In callback, given a mip solution (X,Y) evaluate SCs, adding violated SCs if any

• Method 4 (UC-SC-H sequential-callback hybrid)
 Solve SCUC to 0.1% for (X,Y).
 Evaluate SCs. If no new SC violations, stop
 Add violated SCs and reoptimize for (X,Y), using SC callback.



11

UC-SC-SQ, UC-SC-CB, UC-SC-H

• Case 105



12

UC-SC-SQ, UC-SC-CB, UC-SC-H

• Case 605

• Case 116

SCUC gap SFT violation Time SFT Violation gap

75 0.28% 14s 239 99 14.5 239 -

110 3.3 3

Final callback

1103 0.09%

1483 0.09%

objval: 22839444.9628

objbound: 22818779.0827 objbound: 22857665.9462

Total 1178.0037 runtime: 1483.65039706

SEQ1+CallBack (new) CallBack



13

Further SCUC/SC algorithmic possibilities

• Without bus outage and rebalance feature, tend to see multiple iterations with 
SC violations and new SCs added, though majority are in iteration 1

• With bus outage and rebalance feature, SC violations and new SCs added 
occur exclusively at iteration 1, and fixing UC variables and reoptimizing
dispatch never incurs additional cost.

• We can probably be successful with the UC-SC-ED heuristic

• Need to explore SC evaluation and adding violated constraints based on LP 
relaxation solution.

• Full exploration of UC/ED/SC configuration made possible by efficient SC 
evaluation algorithm.

• HIPPO has multiple LB and UB algorithms. Need to communicate violated 
SCs found in one algorithm with the others to avoid redundant SC evaluations



Thank you

14


