

Fast evaluation of security constraints in a security constrained unit commitment algorithm

Jesse Holzer¹ (presenter), Yonghong Chen², Feng Pan¹, Ed Rothberg³, Arun Veeramany¹

¹PNNL, ²MISO, ³Gurobi

FERC Technical Conference June 26, 2019

PNNL is operated by Battelle for the U.S. Department of Energy

Security constraint evaluation Background in HIPPO

- HIPPO project High Performance Computing for Power Grid Optimization
 - 3 year funding from ARPA-E
 - PNNL, MISO, GE, U. Tenn., U. Fla.
 - Goal 10x speedup over current GE method for SCUC in MISO DA market
- Current method:
 - SCUC MIP model with a small set of SCs watchlist
 - Fix commitment variables
 - Evaluate remaining SCs on the dispatch solution
 - If any violations, add constraints and reoptimize dispatch LP only
- Evaluation of SCs is key

Security constraint evaluation Motivation for new method

- Current SC evaluation method is slow
 - ~10 minutes for 50K buses, 1K ctgs, 10K monitored branches, 36 time periods
 - Probably not optimized to our context DC model, PGen bounds ignored in reaction to imbalance due to outages
 - Difficult to use to benchmark HIPPO SCUC MIP algorithms
 - Impractical to use inside SCUC algorithm SCUC should be ~20 minutes
 - Difficult to make changes for use in HIPPO coded in C, vs HIPPO in Python
 - Potential gain from using SC evaluation inside SCUC algorithm optimize commitment decisions against all SCs
 - We can do better!

Pacific

Northwes

- New SC evaluation method in HIPPO
 - Coded in Python with open source linear algebra libraries
 - Use Sherman-Morrison-Woodbury formula to treat contingencies, instead of partial refactorization used by current method
 - Much faster 5-20 seconds vs 10 minutes
 - Enables SC evaluation within SCUC algorithm

SCUC formulation Highlighting security constraints

- Minimize
 - *F*(*X*, *Y*)
- Subject to
 - (*X*, *Y*) in *G*
 - *B* Y ≤ *H*
- X generator commitment schedules
- Y power injections
- $B Y \le H$ security constraints
 - Flow limit on every monitored line in the base case and every security contingency in each time period
- Initial MIP model may have a very small subset of the security constraints a watchlist – but all need to be checked and satisfied by reported solution
 - IK ctgs, 10K monitored branches, 36 time periods, 360M total linear inequalities
 - 2K injection nodes, 720B nonzeros
 - Watchlist ~200 constraints per time period

Security constraint formulation – base case

- Base case branch flows are:
 - $R = -((C M^T Z) (A^{-1} E)) Y$
- Where
 - Y pnode injections
 - E convert pnode injections to bus injections
 - A bus admittance matrix
 - Z-zero out reference bus angle
 - *M* bus-branch incidence matrix
 - C monitored branch admittance
 - *R* monitored branch flows
- We use a Cholesky factorization for A⁻¹

Security constraint formulation – contingencies

- Contingency k admittance matrix is a rank s_k update of base case
 - $A_k = A + M_k C_k M_k^T$
- Some SC solvers use a partial refactorization technique to undo some pivots of a Cholesky factorization of A, then do some new pivots, to obtain a factorization of A_k. Same technique to move to the next contingency.
- We use the Sherman-Morrison-Woodbury formula:
 - $A_k^{-1} = A^{-1} W_k V_k^{-1} W_k^T$
- W_k has s_k columns, V_k is s_k -by- s_k
 - $W_k = A^{-1} M_k$
 - $\bullet V_k = C_k^{-1} + M_k^T W_k$
- Then
 - $= R_{k} = -(((C M^{T}) Z) (A^{-1} E)) Y + (((C M^{T}) Z) W_{k}) ((V_{k}^{-1} (W_{k}^{T} E)) Y)$
- This method can also handle bus outages and restoration of power imbalance in a contingency by prescribed participation factors. Both of these are low rank linear operators.

- Precompute as much as possible, i.e. before calling SC evaluation on any particular dispatch vector. Minimize SC evaluation time.
 - Cholesky factorizations
 - Low rank factors
- Optimize use of sparse and dense matrices. Dense multiplication can be faster with low rank matrices.
- Compute only the most violated contingency for each monitored branch.
- After evaluating base case term and contingency term, R_k need not be computed for most branches
- Optimize order of multiplication operations to work with small matrices
- Pre-allocate work vectors during startup for computation in place during solve, i.e. without reallocating memory.
- Compute base case sensitivity matrix in startup. ~10% of startup time.
- Treat all contingencies of the same rank in a single matrix computation, rather than a loop over contingencies. Still need to loop over ranks. There are not many different ranks, ~30.

Computational results

Example with current SC evaluation method

- Case 105
 - SCUC to 0.1%, 791s
 - SC evaluation 812s
 - SCUC to 0.1%, 797s
- SC evaluation is slow

Pacific Northwest National LABORATORY Computational results New method startup time

- Compute factorizations (cholesky, low rank) in startup phase
- Solve phase: given injections Y, evaluate flows R, determine SC violations.
- Need to build an SC evaluator for each of 36 time periods. These can be in parallel, but we do not want to use too many resources
- Any calls to solve must wait until startup is complete.
- Future work: build only 1 SC evaluator, use low rank perturbation idea to handle differences in base case admittance matrix between each time period and a static matrix
- Startup time is manageable, and note very fast solve time.

MIP_	_MSS_1090120190110	02309_0X_run1_um1_	CONCURRENT.log	
SFT configuration	3node*12processor	1node *12 processor	1node*36processor	6node*6processor
Pre-processing #Matrix/Node	12	12	36	6
#nodes	3	1	1	6
#Matrix	36	12	36	36
	40.22 195.70 252	39.85 197.47 252	418.73 572.77 252	5.82 161.28 252
	4.46 203.47 7	8.82 209.61 7	7.88 583.93 7	3.88 168.44 7
	4.34 237.23 1	8.73 248.44 1	7.84 620.60 1	3.84 201.45 1
CET run time I and time I thridation	4.35 260.45 0	8.70 276.21 0	7.73 646.93 0	3.83 224.04 0
SFT run time end time #violation	4.40 276.81 0	8.23 296.49 0	7.42 666.12 0	3.80 239.68 0
	4.36 294.97 1	8.60 319.35 1	7.85 687.60 1	3.75 257.12 1
	4.35 312.84 1	8.70 341.97 1	7.65 708.68 1	3.77 274.27 1
	4.36 328.24 0	8.29 361.73 0	7.74 727.39 0	3.85 289.09 0
Total Time	419	452	816	378
	H 0 0 1.640910e+07	H 0 0 1.640910e+07	H 0 0 1.640910e+07	H 0 0 1.640910e+07
	1.6355e+07 0.33% - 115s	1.6355e+07 0.33% - 116s	1.6355e+07 0.33% - 492s	1.6355e+07 0.33% - 80s

SCUC solution methods starting with a small initial set of SCs in the MIP model

- Method 1 (ED-SC iteration)
 - Solve SCUC to 0.1% mipgap for UC solution X and dispatch solution Y. Fix X.
 - Repeat:
 - ✓ Evaluate SCs on Y. If no new SC violations, stop
 - $\checkmark\,$ Add violated SCs and reoptimize for dispatch Y
- Method 2 (UC-SC-SQ sequential iteration)
 - Solve SCUC to 0.1% for (X, Y).
 - Repeat:
 - ✓ Evaluate SCs. If no new SC violations, stop
 - ✓ Add violated SCs and reoptimize for (X, Y). New MIP solve with MIP start from previous X
- Method 3 (UC-SC-CB callback)
 - Solve SCUC to 0.1% for (X, Y) with a callback
 - In callback, given a mip solution (X, Y) evaluate SCs, adding violated SCs if any
- Method 4 (UC-SC-H sequential-callback hybrid)
 - Solve SCUC to 0.1% for (X, Y).
 - Evaluate SCs. If no new SC violations, stop
 - Add violated SCs and reoptimize for (X, Y), using SC callback.

UC-SC-SQ, UC-SC-CB, UC-SC-H

• Case 105

SEQ			CallBack				
SCUC	SFT	Violation	Time	SFT	Violation	gap	
950	5.3	156	70	6.5	158	-	
964	3.2	1	84	2.5	3	-	
903	3.4	0	98	2.3	0	2.45%	
Total	2828.9		253	2.4s	0	0.60%	
objval: 22843244.1577		1478			0.09%		
objbound: 22820405.274							
			objval: 22	840649.628	81		
			objbound	: 22818448	3.3573		

SEQ1+CallBack								
SCUC	gap	SFT	violation					
120	0.43%	9.3s	157					
Final callback								
1092	0.09%							
objval: 22839444.9628								
objbound: 228	objbound: 22818779.0827							
Total	1212.005							

UC-SC-SQ, UC-SC-CB, UC-SC-H

• Case 605

SEQ1+CallBack (new)				CallBack			
SCUC	gap	SFT	violation	Time	SFT	Violation	gap
75	0.28%	14s	239	99	14.5	239	-
				110	3.3	3	
Final callback							
1103	0.09%						
				1483			0.09%
objval: 2283944	14.9628						
objbound: 228	18779.0827			objbound	: 22857665	5.9462	
Total	1178.0037			runtime: 1483.65039706			

SEQ						
SCUC	SFT	Violation				
651	10	160				
559	4.5	4				
606	4.2	2				
536	4.1	0				
Total	2374.8					

• Case 116

SEQ1+CallBack (new)			CallBack				
SCUC	gap	SFT	violation	Time	SFT	Violation	gap
81	0.17%	12.7	346	106	15	345	
				118	3	4	
Final callback				130	2.7	0	0.32%
165	0.07%			178		0	0.07%
objval: 228394	44.9628			objval:	39608981.	6948	
objbound: 228	318779.0827			objbound: 39580669.8076			
Total	246.0024						

SEQ		
SCUC	SFT	Violation
125	14.8	264
94	3.8	3
92	3.6	0
Total	333.2	
objval: 39	612831.324	8
objbound	: 39573964	.1077

Further SCUC/SC algorithmic possibilities

- Without bus outage and rebalance feature, tend to see multiple iterations with SC violations and new SCs added, though majority are in iteration 1
- With bus outage and rebalance feature, SC violations and new SCs added occur exclusively at iteration 1, and fixing UC variables and reoptimizing dispatch never incurs additional cost.
- We can probably be successful with the UC-SC-ED heuristic

Pacific

- Need to explore SC evaluation and adding violated constraints based on LP relaxation solution.
- Full exploration of UC/ED/SC configuration made possible by efficient SC evaluation algorithm.
- HIPPO has multiple LB and UB algorithms. Need to communicate violated SCs found in one algorithm with the others to avoid redundant SC evaluations

Thank you

