

# Implementation of Fuel, Generator Contingency, and Remedial Action Scheme Constraints for Electric System Resilience

Guillermo Bautista, Ph.D.

Director, Market Analysis & Forecasting
California ISO Corporation

FERC Technical Conference AD10-12-010 June 25-27, 2019

### Resiliency Under a Decarbonized Grid

Reliable operation with a change in generation mix

Increased levels of operational uncertainty

Oversupply conditions is a new reality

Steep ramp requirements ~15,000MW and growing

Incentives for resources to follow dispatch instructions

Compensation for resources for the capabilities and services they can provide

Optimization of the use of the grid



### Software capabilities of the CAISO's markets

Linearized AC power flows Dynamic ramp rates Multi-Stage generator model for combined cycle units MIP techniques to solve the optimization problem Multi-interval formulation (72 hours DAM, 4.5 hours RTM) Two internal runs to account for priorities and constraint relaxations Quadratic optimization to handle price degeneracy



### Flexible ramping product in place to handle uncertainty

- Flexible Ramping Up/Down Uncertainty Awards
  - No bids, priced at opportunity cost
  - Paid FRU/FRD marginal price (shadow price of requirement constraint)
  - Allocated to those that cause uncertainty
- Forecasted Movement Up/Down
  - From binding to advisory dispatch
  - Paid FRU/FRD marginal price
  - Charged FRD/FRU marginal price
  - FMU/FMD settlement supplements energy settlement
  - Addresses price formation issue of opportunity cost for out-ofmerit dispatch in t being reflected in advisory LMP of t+1





### Gas-Electric coordination becoming more critical

- Gas-based generation fleet is still a fair share of the CAISO's supply mix
- Recent Aliso Canyon leakage imposed gas limitation on the electric system
- Gas volatility has increased in recent years
- Use of outdated gas prices in the electric system may lead to inefficient unit commitment





### Gas limitations modelled as generation nomograms

$$\sum\nolimits_{i \in S} \propto_i \left(G_{i,t}\right) \leq \gamma_t R \quad \forall t \in T$$

$$\sum\nolimits_{1}^{T}\!{{{\gamma }_{t}}}=1$$

- .  $G_{i,t}$ : Generation dispatch
- .  $\propto_i$ : Gas conversion factor
- . R: Gas limitation
- .  $\gamma_t$ : Distribution factors



- Nomogram constraint optimally allocates gas reductions
- Creates a price signal for resources
- Reduces manual adjustments from Operators

### Improvements to reflect gas conditions in the electric system

- Use of most recent gas indices for day-ahead market
- Close coordination between gas and electric operators
- Manage some gas limitations through the electric system optimization





## Generation Contingency constraints more efficiently dispatches resources around known constraints

- Enhances the SCED to be immediately secure if generator contingency or remedial action scheme activated
  - Currently, market just considers transmission loss
- Transmission system relies on an already large and increasing amount of arm-able remedial action scheme generation
  - Over 20,000 MW of remedial action scheme arm-able generation
  - Operations team must manually manage related constraints
- Generators associated with remedial action schemes cannot be optimally dispatched in market until now
  - Operators currently disable contingencies, manually monitor flows, and engage in out of market action to manage around these constraints



### Generation contingency proposal Generator Contingency

#### Model the "pick-up" effect of the system for a generator loss

- Consistent with reliability studies for generator loss
- Consistent with operator's real-time contingency analysis tool
- Incorporate the potential change in electrical flows into locational marginal prices



Loss of generation spread to other online resources to model transmission line flows.

Most **GEN 1 output** picked up by **GEN SYSTEM**.

**GEN 1** locational marginal price considers flows on **LINE 1** due to pick-up by **GEN SYSTEM**.



#### Generation contingency proposal Remedial Action Scheme Contingency

Taking into account the loss of generation, only one generator contributes to congestion



**GEN 1** is part of remedial action scheme and trips off if **LINE 1** or **LINE 2** go out

**GEN 2** is not on remedial action scheme

**GEN 1** locational marginal price considers **that GEN 1** will not overload **LINE 1** or **LINE 2** if they go out.

**GEN 1's** locational marginal price has a lower congestion component than **GEN 2**