MISO R&D on Improving the Efficiency of Market Clearing Software FERC Technical Conference on Increasing Real-Time and Day-Ahead Market Efficiency through Improved Software June 25-27, 2019 Yonghong Chen Consulting Advisor, Market R&D, MISO ## Overview of MISO R&D on improving the efficiency of market clearing software #### Market clearing optimization software performance - Exiting commercial solver performance improvement through warm start and distributed solution process - Development of high performance distributed and parallel computing based Security Constrained Unit Commitment (SCUC) and Security Analysis software (SFT) under ARPA-E HIPPO project (>4X improvement and aiming to 10X) #### Price efficiency • Developing full ELMP solution through resource convex hull formulation #### Enhancing future resource modeling and clearing process - Pumped storage hydro (DOE grant) - DER and storage aggregation Deliverability for energy and reserves & uncertainty management through stochastic approaches - Co-optimized formulation for reserve deliverability - Stochastic look ahead commitment: ARPA-E project ## Commercial solver options [1] #### Commercial Solvers, settings and SCUC model options - Solver: CPLEX / Gurobi - Solution method: Cold start / Warm start - Design options: Production / Enhanced combined cycle configuration (ECC) #### Warm Start includes two techniques: - "MIP start": Use repaired initial commitment solutions (e.g. repaired previous day commitment) as the first incumbent solution - Lazy Constraints: set unlikely to bind constraints as lazy to speed up MIP #### Distributed SCUC: best_4 CPLEX-Cold | Gurobi-Cold | CPLEX-Warm-from-InitUC | Gurobi-Warm-from-InitUC | ... The first reaching tolerance or the best at the time limit ## SCUC performance benchmark #### Large set of sample cases - Sample T1: solving time from method 1, - Sample T2: solving time from method 2 ## Developed statistic performance comparison index ## Average performance improvement (k-factor) - Sort T1 and T2 to get quantile distribution profile - Compute *k* so that the confidence of the following test is ">97%" - H(k): $k \cdot T_1(p) T_2(p) > 0$ #### Risk factor for bad cases - Index to measure number of cases stopped at different time limits (1200s-1800s) - High risk if high gap at time limit ### K-factor example 0.7553 889.0349286 765.4021375 652.2725482 635.4202946 613.5400089 542.4708107 493.1164875 469.6666884 418.9558464 404.8649696 403.3181152 380.4937045 379.3260107 378.594125 368.0085955 362.6029134 359.1330652 337.8192545 336.9582125 330.0781848 326.7850768 322.7963375 Sorted CPLEX_cold solving time T₁ 1177 864 841 812 718 653 622 536 534 504 502 501 480.078 475.484 447.265 446 437 433 CPLEX cold 1013 Sorted Gurobi_warm solving time T, 1284.516 1211.687 1068.266 1004.969 769.922 551.281 545.328 377.282 362.172 340.016 329.859 320.609 295.766 276.828 275.078 268.422 268.11 256.156 248.047 245.406 245 242 Gurobi warm 553*CPLEX cold -446.2848625 -415.9934518 -369.5487054 -156.3819911 -8.8101893 -52.2115125 92.3846884 56.7838464 64.8489696 73.4591152 59.8847045 83.5600107 101.766125 92.9305955 94.1809134 91.0230652 81.6632545 88.9112125 84.6721848 81.7850768 80.7963375 Gurobi warm | D | ו שו | K*1 | 1-1 | ٦
2 | |---|------|-----|-----|--------| |---|------|-----|-----|--------| $$H(k): K*T_1-T_2 > 0$$ Adjust K so that the probability of the average of K*T₁-T₂>0 is greater than 97% $(\alpha = 0.03)$ $$\frac{k_{21}^{\alpha}}{\inf\{k|\ p\left(\overline{k\cdot T_1(p)-T_2(p)}>0\right)>1-\alpha\}}$$ With 97% confidence that Gurobi_warm takes less than 75.53% of the time used by CPLEX cold With 97% confidence that Gurobi warm is 24% faster than CPLEX cold on average # Comparing ECC prototype to existing production with commercial solver options (99 sample cases) #### CPLEX_cold_ECC: - 1.91x to solve compare to production "no ECC" - High risk (4 cases at 99% gap in 1800s) #### Best_4_ECC: - 1.12x compared to production "no ECC" - Much lower risk factor - no large gap at time limits | Scenario | 1 | ackslash | 6 | 10 | | |---|-----------------|----------|---------------|------------|--| | Method | CPLEX_Cold_PROD | | PLEX Cold ECC | Best 4 ECC | | | $\bar{x_j}$ Sample mean | 415.23 | | 770.29 | 457.1/1 | | | $\overline{x_j}/\overline{x_1}$ Sample mean ratio | 1.00 | | 1.86 | 1.10 | | | \underline{k}_{j1} 0.03 K-factor | | | 1.91 | 1.12 | | | # of cases at 1200s (X1) | 0 | | 10 | 2 | | | # of cases between 1200s and 1800s (X3) | 0 | | 0 | 1 | | | # of cases with large gap at 1800s (X100) | 0 | | 4 | 0 | | | Risk Index | 0 | | 410/99 | 5/99 | | HIPPO Software Developed Under ARAP-E Project: Next Generation Clearing Engine* #### Highlights - Fast concurrent MIP with extremely fast SFT - Configurable concurrent optimizer - Executable in desktop and high performance computer. - Data module, formulation factory, Algorithm Factory, Configuration Scripts. - Python Programming Language - Achieve >4X and aiming at 10X for median to hard cases. *Presentations: 1) Feng Pan, Yonghong Chen, Jesse Holzer: HIPPO: A Concurrent Optimizer for Solving Day-ahead Security Constrained Unit Commitment Problem 2) Jesse Holzer, Yonghong Chen, Feng Pan, Edward Rothberg, Arun Veeramany, Fast Evaluation of Security Constraints in a Security Constrained Unit Commitment Algorithm MIS ? ORIDA TENNESSEE ## HIPPO Concurrent Optimizer MIP Solution Configuration #### **Gurobi full MIP with different settings:** Using customized **Gurobi8.1.0** with variable fixing fork-off #### Fast HIPPO SFT - Parallel processing; Configurable across nodes; - Solve 36 intervals with 1000 contingencies and 10,000 monitored branches in less than 10s! ## HIPPO fast SFT allows efficient communication between SFT & MIP through callback API. No need for SCUC-SFT iterations. | SFT configuration | 3node*12processor | 1node *12 processor | 1node*36processor | 6node*6processor | |--|-----------------------------|-----------------------------|------------------------------|---------------------| | Pre-processing #Matrix/Node | 12 | 12 | 36 | 6 | | #nodes | 3 | 1 | 1 | 6 | | #Matrix | 36 | 12 | 36 | 36 | | | 40.22 195.70 252 | 39.85 197.47 252 | 418.73 572.77 252 | 5.82 161.28 252 | | | 4.46 203.47 7 | 8.82 209.61 7 | 7.88 583 93 7 | 3.88 168.44 7 | | | 4.34 237.23 1 | 8.73 248.44 1 | 7.84 620.60 1 | 3.84 201.45 1 | | SET shock time I and time I thislation | 4.35 260.45 0 | 8.70 276.21 0 | 7.73 646.93 0 | 3.83 224.04 0 | | SFT check time end time #violation | 4.40 276.81 0 | 8.23 296.49 0 | 7.42 666.12 0 | 3.80 239.68 0 | | | 4.36 294.97 1 | 8.60 319.35 1 | 7.85 687.60 1 | 3.75 257.12 1 | | | 4.35 312.84 1 | 8.70 341.97 1 | 7.65 708.68 1 | 3.77 274.27 1 | | | 4.36 328.24 0 | 8.29 361.73 0 | 7.74 727.39 0 | 3.85 289.09 0 | | Total Time | 419 | 452 | 816 | 378 | ## Existing approach with 3 SCUC-SFT iterations: SFT pre-processing 36 full matrix on 1 node is long | MIP1(s) | SFT1(s) | SFT_AddConstr_1 | MIP2(s) | SFT2 (s) | SFT_AddConstr_2 | MIP3 (s) | SFT3 (s) | SFT_AddConstr_3 | |----------------|---------|-----------------|---------|----------|-----------------|----------|----------|-----------------| | 398 | 1212 | 211 | 623 | 764 | 10 | 731 | 768 | 5 | | Total Time (s) | 4496 | | | | | | | | ## HIPPO_Concurrent versus GE (with SFT) GE solving time with 3 SCUC-SFT iterations (s) #### HIPPO at MISO ## Evaluate path for production implementation - Development to further align with production and evaluate near term market enhancement - Software and hardware configuration #### R&D prototype tool to study new market rule and market system design options - Future resource project - Future DER scenarios and evaluation of market rules and software performance - DER aggregation T&D integration - Renewable study 15-min DA case - Watchlist constraint pre-screening - Enhanced combined cycle and pumped storage optimization - Pricing study - Historical data / machine learning - Case library with over 120 historical cases can be used for future studies ## Improving price efficiency: applying convex envelope formulation on single interval ELMP (near term) [2][3] ### Convex envelope of the energy cost function - MISO's Day-Ahead unit commitment piece wise linear formulation implemented in 2017 that contributed to the reduction of its solving time from 4 to 3 hours - Can also improve single interval ELMP approximation ## Simulation show modest price impacts on single interval ELMP approximation [5] - Resulting prices can be higher, lower or equal to production ELMP - Overall uplift reduced with higher prices helping to reduce make-whole payments and lower prices helping to avoid lost opportunity cost - Planning for near term implementation $$\gamma_{j_{1}} + \dots + \gamma_{j_{m}} \leq u_{j,t} p_{j,t} = \gamma_{j_{1}} \cdot P_{j_{1},t} + \dots + \gamma_{j_{m}} \cdot P_{j_{m},t} C_{j,t}^{P}(p_{j,t}) = \gamma_{j_{1}} \cdot C_{j,t}^{P}(P_{j_{1},t}) + \dots + \gamma_{m} \cdot C_{j,t}^{P}(P_{j_{m},t}) u_{j,t} \cdot \underline{P}_{j,t} \leq p_{j,t} \leq u_{j,t} \cdot \overline{P}_{j,t}$$ where $u_{i,t}$ is the binary commitment variable ## Improving price efficiency: solution for full convex hull pricing^[4] ## Solving full convex hull pricing through LP relaxation - Developing convex envelop and convex hull formulation for individual generator - Under the condition of "convex envelop" and "convex hull" formulation on individual resource #### Future work • Evaluating the impact on high renewable / DER penetration ``` SCUC problem: v(y) = Min_{(x,u) \in X} f(x,u) s.t. \quad g(x) = y, \quad u = 0,1 SCUC \text{ integer relaxation:} v(y) = Min_{(x,u) \in \textbf{conv}(X)} f^{**}(x,u) s.t. \quad g(x) = y, \quad 0 \le u \le 1 L_Relex = Max_{\pi}q(\pi) L_Relex = Max_{\pi}q(\pi) s.t. \quad q(\pi) = Min_{(x,u) \in \textbf{conv}(X),0 \le u \le 1} [f^{**}(x,u) - \pi(g(x) - y)] S.t. \quad q(\pi) = Min_{(x,u) \in \textbf{conv}(X),0 \le u \le 1} [f^{**}(x,u) - \pi(g(x) - y)] S.t. \quad q(\pi) = Min_{(x,u) \in \textbf{conv}(X),0 \le u \le 1} [f^{**}(x,u) - \pi(g(x) - y)] ``` ## Preliminary results* - Apply extended convex hull formulation - Simplified MISO DA case - Energy only, no transmission, generation only, ignore must on / must off | | SCUC | SCUC Integer relation | SCUC Integer relation | SCUC Integer relation | |--------------|----------|-----------------------|-------------------------|-------------------------| | Math problem | MIP | LP | LP | Multiple LP | | | | | Extended convex hull on | Extended convex hull on | | Formulation | HIPPO | HIPPO | all generators | selected generators | | objective | 47889159 | 47860497 | 47887537 | 47887537 | | time (s) | 139 | 18 | >20000 | 255 | | gap | 0% | - | - | - | | Uplift | \$8,999 | \$4,042 | \$1,622 | \$1,622 | **LMP** Approximate ELMP through Integer relation of HIPPO SCUC formulation True ELMP through Integer relation of extended convex hull SCUC formulation *Presentations Yongpei Guan, Yanan Yu,, Yonghong Chen: An Efficient Algorithm for Convex Hull Pricing Problems and MISO case study #### Enhancing future resource modeling and clearing process #### Optimize pumped storage through multi-stage market clearing process* - SCUC optimization: applying configuration based combined cycle modeling - 3 configurations: generating, pumping and offline - SOC optimization through energy limited constraints - Multi-stage clearing processes - How to optimize through DA-SCUC, FRAC, IRAC, LAC and single interval SCED? - Uncertainty management - Pricing to reflect SOC constraint through multi-stage clearing processes ## DOE grant: Modeling and analyzing the role of pumped storage in asset and system optimization - Joint work with MS&T and other R&D partners - https://www.energy.gov/eere/articles/funding-selections-announced-innovative-design-concepts-standard-modular-hydropower *Presentation: Bing Huang, Yonghong Chen, Ross Baldick, A Configuration Based Pumped-storage Hydro Model in MISO Day-ahead Market ## Future Resources: Initial findings summary | Out-of-market & self-
responding DER | Potential pricing oscillation: Status Quo is not a good idea! | |---|--| | Aggregate in large regions & update participation factors | Potential price oscillation even when updating participation factor instantaneously. Current information may not be a good prediction of the future. | | Only aggregate resources w/ similar congestion impact | Large number of small resources with less than 2% sensitivity approximation may result in over 100 MW flow differences. Requires a large number of zones. | | Only allow DERs to participate under EPNode (similar to DRR-2 and Generators) | Most efficient market outcome right now Size issue & computational challenges: May result in a large number of small resources under one EPNode & restrict effectiveness of aggregations by limiting diversity MIP solver may not make effective commitment decisions for small resources due to relative MIP gap size. Even if model small resources as continuous variables, may still face computational challenges due to the large number of non-zeros. | | T&D coordination | Similarity to SEAMS. We have experienced M2M flow oscillation due to limited information from the other side of SEAMS. Lack of information & visibility between T&D can also lead to oscillation. | #### Small Illustration System on Price Oscillation caused by Aggregation #### Flow limits of line 1-3: • $-58 \le SF_{Cpnode3}^*(-L1-L2) + SF_{Cpnode2}^*G2 \le 58$ • $SF_{Cpnode3} = SF_{L1} * LF_{L1} + SF_{L2} * LF_{L2}$ = -0.2*L1/(L1+L2) - 0.8*L2/(L1+L2) Calculated based on current load MW, Not necessarily what the load will be Assume aggregator disaggregates based on cost Inconsistency causes flow and price oscillation! | SF | Bus 1 | Bus 2 | Bus 3 | |----------|-------|-------|-------| | Line 1-3 | 0 | -0.2 | -0.8 | ### Uncertainty management ## Internal study on quantify uncertainty and flexibility needs* #### ARPA-E Stochastic LAC project - Input data uncertainty - Renewable resources; demand response; generator non-compliance; - Load forecast; - Interchange and loop flow; - Extreme weather; contingencies - Application - Systematic scenario definition (currently: 3 LAC scenarios) - Decision making under multi-scenario: e.g. commitment from SLAC - Advisory tool for operational decision: - Capacity evaluation with systematic scenarios considering energy and reserve deliverability Congcong Wang, Stephen Rose, Long Zhao, Managing Flexibility and Uncertainty in Markets and Operations - Including Near-Term Improvements to Manage Intra-Hour Flexibility ^{*}Presentation: #### References - [1] Yonghong Chen, Fengyu Wang, Yaming Ma, Yiyun Yao, "A Distributed Framework for Solving and Benchmarking Security Constrained Unit Commitment with Warm Start", IEEE Transactions on Power Systems, under review - [2] Yonghong Chen and Fengyu Wang, "MIP formulation improvement for large scale security constrained unit commitment with configuration based combined cycle modeling," *Electr. Power Syst. Res.*, vol. 148, pp. 147-154, Jul. 2017. - [3] B. Hua and R. Baldick, "A convex primal formulation for convex hull pricing," IEEE Transactions on Power Systems, vol. 32, no. 5, pp. 3814–3823, 2017 - [4] Yanan Yu, Yongpei Guan, Yonghong Chen, An Integral Formulation and Convex Hull Pricing for Unit Commitment, IEEE Transactions on Power Systems, under review - [5] MISO, ELMP III White Paper I, Jan. 2019, https://cdn.misoenergy.org/20190117%20MSC%20Item%2005%20ELMP%20III%20Whitepaper315878.pdf