

MISO R&D on Improving the Efficiency of Market Clearing Software

FERC Technical Conference on Increasing Real-Time and Day-Ahead Market Efficiency through Improved Software June 25-27, 2019

Yonghong Chen
Consulting Advisor, Market R&D, MISO

Overview of MISO R&D on improving the efficiency of market clearing software

Market clearing optimization software performance

- Exiting commercial solver performance improvement through warm start and distributed solution process
- Development of high performance distributed and parallel computing based Security Constrained Unit Commitment (SCUC) and Security Analysis software (SFT) under ARPA-E HIPPO project (>4X improvement and aiming to 10X)

Price efficiency

• Developing full ELMP solution through resource convex hull formulation

Enhancing future resource modeling and clearing process

- Pumped storage hydro (DOE grant)
- DER and storage aggregation

Deliverability for energy and reserves & uncertainty management through stochastic approaches

- Co-optimized formulation for reserve deliverability
- Stochastic look ahead commitment: ARPA-E project

Commercial solver options [1]

Commercial Solvers, settings and SCUC model options

- Solver: CPLEX / Gurobi
- Solution method: Cold start / Warm start
- Design options: Production / Enhanced combined cycle configuration (ECC)

Warm Start includes two techniques:

- "MIP start": Use repaired initial commitment solutions (e.g. repaired previous day commitment) as the first incumbent solution
- Lazy Constraints: set unlikely to bind constraints as lazy to speed up MIP

Distributed SCUC: best_4

CPLEX-Cold | Gurobi-Cold | CPLEX-Warm-from-InitUC | Gurobi-Warm-from-InitUC | ...

The first reaching tolerance or the best at the time limit

SCUC performance benchmark

Large set of sample cases

- Sample T1: solving time from method 1,
- Sample T2: solving time from method 2

Developed statistic performance comparison index

Average performance improvement (k-factor)

- Sort T1 and T2 to get quantile distribution profile
- Compute *k* so that the confidence of the following test is ">97%"
 - H(k): $k \cdot T_1(p) T_2(p) > 0$

Risk factor for bad cases

- Index to measure number of cases stopped at different time limits (1200s-1800s)
- High risk if high gap at time limit

K-factor example

0.7553

889.0349286

765.4021375

652.2725482

635.4202946

613.5400089

542.4708107

493.1164875

469.6666884

418.9558464

404.8649696

403.3181152

380.4937045

379.3260107

378.594125

368.0085955

362.6029134

359.1330652

337.8192545

336.9582125

330.0781848

326.7850768

322.7963375

Sorted CPLEX_cold solving time T₁

1177

864

841

812

718

653

622

536

534

504

502

501

480.078

475.484

447.265

446

437

433

CPLEX cold

1013

Sorted Gurobi_warm solving time T,

1284.516

1211.687

1068.266

1004.969

769.922

551.281

545.328

377.282

362.172

340.016

329.859

320.609

295.766

276.828

275.078

268.422

268.11

256.156

248.047

245.406

245

242

Gurobi warm

553*CPLEX cold

-446.2848625

-415.9934518

-369.5487054

-156.3819911

-8.8101893

-52.2115125

92.3846884

56.7838464

64.8489696

73.4591152

59.8847045

83.5600107

101.766125

92.9305955

94.1809134

91.0230652

81.6632545

88.9112125

84.6721848

81.7850768

80.7963375

Gurobi warm

D	ו שו	K*1	1-1	٦ 2
---	------	-----	-----	--------

$$H(k): K*T_1-T_2 > 0$$

Adjust K so that the probability of the average of K*T₁-T₂>0 is greater than 97% $(\alpha = 0.03)$

$$\frac{k_{21}^{\alpha}}{\inf\{k|\ p\left(\overline{k\cdot T_1(p)-T_2(p)}>0\right)>1-\alpha\}}$$

With 97% confidence that Gurobi_warm takes less than 75.53% of the time used by CPLEX cold

With 97% confidence that Gurobi warm is 24% faster than CPLEX cold on average

Comparing ECC prototype to existing production with commercial solver options (99 sample cases)

CPLEX_cold_ECC:

- 1.91x to solve compare to production "no ECC"
- High risk (4 cases at 99% gap in 1800s)

Best_4_ECC:

- 1.12x compared to production "no ECC"
- Much lower risk factor
 - no large gap at time limits

Scenario	1	ackslash	6	10	
Method	CPLEX_Cold_PROD		PLEX Cold ECC	Best 4 ECC	
$\bar{x_j}$ Sample mean	415.23		770.29	457.1/1	
$\overline{x_j}/\overline{x_1}$ Sample mean ratio	1.00		1.86	1.10	
\underline{k}_{j1} 0.03 K-factor			1.91	1.12	
# of cases at 1200s (X1)	0		10	2	
# of cases between 1200s and 1800s (X3)	0		0	1	
# of cases with large gap at 1800s (X100)	0		4	0	
Risk Index	0		410/99	5/99	

HIPPO Software Developed Under ARAP-E Project: Next Generation

Clearing Engine*

Highlights

- Fast concurrent MIP with extremely fast SFT
- Configurable concurrent optimizer
- Executable in desktop and high performance computer.
- Data module, formulation factory, Algorithm Factory, Configuration Scripts.
- Python Programming Language
- Achieve >4X and aiming at 10X for median to hard cases.

*Presentations:

1) Feng Pan, Yonghong Chen, Jesse Holzer: HIPPO: A Concurrent Optimizer for Solving Day-ahead Security Constrained Unit Commitment Problem

2) Jesse Holzer, Yonghong Chen, Feng Pan, Edward Rothberg, Arun Veeramany, Fast Evaluation of Security Constraints in a Security Constrained Unit Commitment Algorithm

MIS ?

ORIDA TENNESSEE

HIPPO Concurrent Optimizer MIP Solution Configuration

Gurobi full MIP with different settings:

Using customized **Gurobi8.1.0** with variable fixing fork-off

Fast HIPPO SFT

- Parallel processing; Configurable across nodes;
- Solve 36 intervals with 1000 contingencies and 10,000 monitored branches in less than 10s!

HIPPO fast SFT allows efficient communication between SFT & MIP through callback API. No need for SCUC-SFT iterations.

SFT configuration	3node*12processor	1node *12 processor	1node*36processor	6node*6processor
Pre-processing #Matrix/Node	12	12	36	6
#nodes	3	1	1	6
#Matrix	36	12	36	36
	40.22 195.70 252	39.85 197.47 252	418.73 572.77 252	5.82 161.28 252
	4.46 203.47 7	8.82 209.61 7	7.88 583 93 7	3.88 168.44 7
	4.34 237.23 1	8.73 248.44 1	7.84 620.60 1	3.84 201.45 1
SET shock time I and time I thislation	4.35 260.45 0	8.70 276.21 0	7.73 646.93 0	3.83 224.04 0
SFT check time end time #violation	4.40 276.81 0	8.23 296.49 0	7.42 666.12 0	3.80 239.68 0
	4.36 294.97 1	8.60 319.35 1	7.85 687.60 1	3.75 257.12 1
	4.35 312.84 1	8.70 341.97 1	7.65 708.68 1	3.77 274.27 1
	4.36 328.24 0	8.29 361.73 0	7.74 727.39 0	3.85 289.09 0
Total Time	419	452	816	378

Existing approach with 3 SCUC-SFT iterations:

SFT pre-processing 36 full matrix on 1 node is long

MIP1(s)	SFT1(s)	SFT_AddConstr_1	MIP2(s)	SFT2 (s)	SFT_AddConstr_2	MIP3 (s)	SFT3 (s)	SFT_AddConstr_3
398	1212	211	623	764	10	731	768	5
Total Time (s)	4496							

HIPPO_Concurrent versus GE (with SFT)

GE solving time with 3 SCUC-SFT iterations (s)

HIPPO at MISO

Evaluate path for production implementation

- Development to further align with production and evaluate near term market enhancement
- Software and hardware configuration

R&D prototype tool to study new market rule and market system design options

- Future resource project
- Future DER scenarios and evaluation of market rules and software performance
- DER aggregation T&D integration
- Renewable study 15-min DA case
- Watchlist constraint pre-screening
- Enhanced combined cycle and pumped storage optimization
- Pricing study
- Historical data / machine learning
- Case library with over 120 historical cases can be used for future studies

Improving price efficiency: applying convex envelope formulation on single interval ELMP (near term) [2][3]

Convex envelope of the energy cost function

- MISO's Day-Ahead unit commitment piece wise linear formulation implemented in 2017 that contributed to the reduction of its solving time from 4 to 3 hours
- Can also improve single interval ELMP approximation

Simulation show modest price impacts on single interval ELMP approximation [5]

- Resulting prices can be higher, lower or equal to production ELMP
- Overall uplift reduced with higher prices helping to reduce make-whole payments and lower prices helping to avoid lost opportunity cost
- Planning for near term implementation

$$\gamma_{j_{1}} + \dots + \gamma_{j_{m}} \leq u_{j,t}
p_{j,t} = \gamma_{j_{1}} \cdot P_{j_{1},t} + \dots + \gamma_{j_{m}} \cdot P_{j_{m},t}
C_{j,t}^{P}(p_{j,t}) = \gamma_{j_{1}} \cdot C_{j,t}^{P}(P_{j_{1},t}) + \dots + \gamma_{m} \cdot C_{j,t}^{P}(P_{j_{m},t})
u_{j,t} \cdot \underline{P}_{j,t} \leq p_{j,t} \leq u_{j,t} \cdot \overline{P}_{j,t}$$

where $u_{i,t}$ is the binary commitment variable

Improving price efficiency: solution for full convex hull pricing^[4]

Solving full convex hull pricing through LP relaxation

- Developing convex envelop and convex hull formulation for individual generator
- Under the condition of "convex envelop" and "convex hull" formulation on individual resource

Future work

• Evaluating the impact on high renewable / DER penetration

```
SCUC problem: v(y) = Min_{(x,u) \in X} f(x,u) s.t. \quad g(x) = y, \quad u = 0,1 SCUC \text{ integer relaxation:} v(y) = Min_{(x,u) \in \textbf{conv}(X)} f^{**}(x,u) s.t. \quad g(x) = y, \quad 0 \le u \le 1 L_Relex = Max_{\pi}q(\pi) L_Relex = Max_{\pi}q(\pi) s.t. \quad q(\pi) = Min_{(x,u) \in \textbf{conv}(X),0 \le u \le 1} [f^{**}(x,u) - \pi(g(x) - y)] S.t. \quad q(\pi) = Min_{(x,u) \in \textbf{conv}(X),0 \le u \le 1} [f^{**}(x,u) - \pi(g(x) - y)] S.t. \quad q(\pi) = Min_{(x,u) \in \textbf{conv}(X),0 \le u \le 1} [f^{**}(x,u) - \pi(g(x) - y)]
```


Preliminary results*

- Apply extended convex hull formulation
- Simplified MISO DA case
 - Energy only, no transmission, generation only, ignore must on / must off

	SCUC	SCUC Integer relation	SCUC Integer relation	SCUC Integer relation
Math problem	MIP	LP	LP	Multiple LP
			Extended convex hull on	Extended convex hull on
Formulation	HIPPO	HIPPO	all generators	selected generators
objective	47889159	47860497	47887537	47887537
time (s)	139	18	>20000	255
gap	0%	-	-	-
Uplift	\$8,999	\$4,042	\$1,622	\$1,622

LMP

Approximate ELMP through Integer relation of HIPPO SCUC formulation

True ELMP through Integer relation of extended convex hull SCUC formulation

*Presentations

Yongpei Guan, Yanan Yu,, Yonghong Chen: An Efficient Algorithm for Convex Hull Pricing Problems and MISO case study

Enhancing future resource modeling and clearing process

Optimize pumped storage through multi-stage market clearing process*

- SCUC optimization: applying configuration based combined cycle modeling
 - 3 configurations: generating, pumping and offline
 - SOC optimization through energy limited constraints
- Multi-stage clearing processes
 - How to optimize through DA-SCUC, FRAC, IRAC, LAC and single interval SCED?
 - Uncertainty management
- Pricing to reflect SOC constraint through multi-stage clearing processes

DOE grant: Modeling and analyzing the role of pumped storage in asset and system optimization

- Joint work with MS&T and other R&D partners
 - https://www.energy.gov/eere/articles/funding-selections-announced-innovative-design-concepts-standard-modular-hydropower

*Presentation:

Bing Huang, Yonghong Chen, Ross Baldick, A Configuration Based Pumped-storage Hydro Model in MISO Day-ahead Market

Future Resources: Initial findings summary

Out-of-market & self- responding DER	Potential pricing oscillation: Status Quo is not a good idea!
Aggregate in large regions & update participation factors	 Potential price oscillation even when updating participation factor instantaneously. Current information may not be a good prediction of the future.
Only aggregate resources w/ similar congestion impact	 Large number of small resources with less than 2% sensitivity approximation may result in over 100 MW flow differences. Requires a large number of zones.
Only allow DERs to participate under EPNode (similar to DRR-2 and Generators)	 Most efficient market outcome right now Size issue & computational challenges: May result in a large number of small resources under one EPNode & restrict effectiveness of aggregations by limiting diversity MIP solver may not make effective commitment decisions for small resources due to relative MIP gap size. Even if model small resources as continuous variables, may still face computational challenges due to the large number of non-zeros.
T&D coordination	 Similarity to SEAMS. We have experienced M2M flow oscillation due to limited information from the other side of SEAMS. Lack of information & visibility between T&D can also lead to oscillation.

Small Illustration System on Price Oscillation caused by Aggregation

Flow limits of line 1-3:

• $-58 \le SF_{Cpnode3}^*(-L1-L2) + SF_{Cpnode2}^*G2 \le 58$

• $SF_{Cpnode3} = SF_{L1} * LF_{L1} + SF_{L2} * LF_{L2}$ = -0.2*L1/(L1+L2) - 0.8*L2/(L1+L2)

Calculated based on current load MW, Not necessarily what the load will be

Assume aggregator disaggregates based on cost

Inconsistency causes flow and price oscillation!

SF	Bus 1	Bus 2	Bus 3
Line 1-3	0	-0.2	-0.8

Uncertainty management

Internal study on quantify uncertainty and flexibility needs*

ARPA-E Stochastic LAC project

- Input data uncertainty
 - Renewable resources; demand response; generator non-compliance;
 - Load forecast;
 - Interchange and loop flow;
 - Extreme weather; contingencies
- Application
 - Systematic scenario definition (currently: 3 LAC scenarios)
 - Decision making under multi-scenario: e.g. commitment from SLAC
 - Advisory tool for operational decision:
 - Capacity evaluation with systematic scenarios considering energy and reserve deliverability

Congcong Wang, Stephen Rose, Long Zhao, Managing Flexibility and Uncertainty in Markets and Operations - Including Near-Term Improvements to Manage Intra-Hour Flexibility

^{*}Presentation:

References

- [1] Yonghong Chen, Fengyu Wang, Yaming Ma, Yiyun Yao, "A Distributed Framework for Solving and Benchmarking Security Constrained Unit Commitment with Warm Start", IEEE Transactions on Power Systems, under review
- [2] Yonghong Chen and Fengyu Wang, "MIP formulation improvement for large scale security constrained unit commitment with configuration based combined cycle modeling," *Electr. Power Syst. Res.*, vol. 148, pp. 147-154, Jul. 2017.
- [3] B. Hua and R. Baldick, "A convex primal formulation for convex hull pricing," IEEE Transactions on Power Systems, vol. 32, no. 5, pp. 3814–3823, 2017
- [4] Yanan Yu, Yongpei Guan, Yonghong Chen, An Integral Formulation and Convex Hull Pricing for Unit Commitment, IEEE Transactions on Power Systems, under review
- [5] MISO, ELMP III White Paper I, Jan. 2019, https://cdn.misoenergy.org/20190117%20MSC%20Item%2005%20ELMP%20III%20Whitepaper315878.pdf

