A Multi-Period Market Design for Markets with Intertemporal Constraints

ISO-NE PUBLIC

new england

 \mathbf{ISO}

Jinye Zhao, Tongxin Zheng and Eugene Litvinov

Disclaimer: The views expressed herein are solely of the authors' and do not represent those of ISO New England

INTRODUCTION

Temporal market coupling under the recent industry trends

Recent Industry Trends

- "Duck curve" load shape resulting from a large amount of renewable integration
 - More frequently constrained by ramping capability
- Increasing participation of energy storage resources

 ISO-managed energy storage
- The nation increasingly relies on natural gas fired units
 - Managing limited energy resources

Temporal Market Coupling

- Intertemporal constraints couple the markets in different time intervals
 - Ramping constraints
 - □ State-of-charge constraints
 - Limited energy constraints
- Temporal market coupling has become stronger under the recent industry trends.
- Call for careful studies of scheduling and pricing methods for markets with intertemporal constrains.

MOTIVATION

Issues with the existing multi-period market designs

The Myopic Approach

- Each RT market clearing solves for one time period
 ISO NE, MISO, PJM, and SPP
- Intertemporal linkages are not explicitly modeled

The Myopic Approach - Example

Issues of the Myopic Approach

• Can result in economically inefficient dispatch or unreliable operation

- Manual actions are taken to adjust dispatch
 Subjective, suboptimal, or infeasible
- Lack of dispatch-following incentives
 - Clearing prices are inconsistent with manual actions

The Multi-Period Single-Settlement Approach

- Each RT market clearing solves for multiple time periods
- Only the first period is settled, prices for later periods are advisory

ISO-NE PUBLIC

NY ISO and CA ISO

The Multi-Period Single-Settlement Approach -Example

Issues of the Multi-Period Single-Settlement Approach

- Lack of dispatch-following incentives
 - Opportunity costs are not compensated. Each RT market clearing solves for multiple time periods
- Trade-offs have to be made between computational efficiency and operational reliability
 - If the look-ahead horizon is too short, the dispatch may not be efficient or reliable.
 - If the look-ahead horizon is too long, the dispatch problem becomes very large.

Summary of the Existing Approaches

- Economically inefficient
- Unreliable schedules
- Tradeoff between computational efficiency and reliable schedules
- Lacking dispatch-following incentives
 - Opportunity costs are not reflected in the LMP
 - Opportunity costs are not compensated in the market
- The coordination between forward and real-time markets is weak
 - RTM only relies on the information within a short RT look-ahead time horizon

12

A COORDINATED MULTI-PERIOD SCHEDULING AND PRICING DESIGN

Coordinated Multi-Period Scheduling and Pricing Framework

Forward level- Multi-Period clearing

□ Produce dispatch and prices for multiple time periods simultaneously under the forecasted system condition

RTM level – Coordinate with forward market

Dispatch is guided by the forward schedules

Pricing takes into account intertemporal opportunity costs

Multi-Settlement – Reducing risk exposure

Settle deviation from previous market clearing in each rolling-horizon

Benefits of Coordinated Multi-Period Market Design

- Provide proper dispatch-following incentives
 - Pricing takes into account the opportunity cost associated with the intertemporal constraints
- Ensure the system reliability and efficiency
 - Dispatch considers future system conditions
- No need for the ISO to make tradeoffs between computational efficiency and operational reliability.

Reference: "A Multi-Period Market Design for Markets with Intertemporal Constraint," J. Zhao, T. Zheng, and E. Litvinov, available at Arxiv.

Illustrative Example: Forward Market Clearing

Gen	Offer (\$/MWh)	p ^{max} (MW)	Ramping (MW/min)	P ₀ (MW)
1	28	100	3	95
2	30	100	4	35

Forward market time horizon is 4 periods

16

Illustrative Example: Forward Market Clearing

Gen2 is a marginal resource:

	$LMP_t =$	Marginal production cost	+ Intertemporal opportunity cost	
	$LMP_t =$	C _{gen2,t}	$ \begin{array}{c} +(\pi^{up}_{t-1:t} - \pi^{dn}_{t-1:t} - \\ \pi^{up}_{t:t+1} + \pi^{dn}_{t:t+1}) \end{array} $	
t1	28 =	30	-2	Gen2's lost \$2 at t1
t2	32 =	30	+2	\$2 lost opportunity cost
t3	32 =	30	+2	is compensated at t2
t4	28 =	30	-2	

ISO-NE PUBLIC

Illustrative Example: RTM Scheduling

ISO-NE PUBLIC

18

- Shorter look-ahead horizon in the RTM
- Forward schedules are used as a guideline for RTM scheduling
- Dispatch consistency

RTM schedules are consistent with forward schedules under the perfect forecast.

Illustrative Example – RTM Pricing

ISO-NE PUBLIC

19

RTM pricing incorporates intertemporal opportunity costs as offer adders

- Provide proper compensation
- Price consistency

RTM prices are consistent with the forward prices under the perfect forecast.

Illustrative Example – Multi-Settlement

Illustrative Example – Multi-Settlement

ISO-NE PUBLIC

21

□ Reduce risk exposure for market participants

NUMERICAL EXAMPLES

ISO New England System

- Setup
 - Forward market
 - 24-hour multi-period problem with forecasted load
 - RTM
 - 25 random realizations: sampling load deviating uniformly 10% above forecasted load
 - Hourly granularity
 - Resources
 - Pumped-storage units: SOC constraint, end-of-the-day target SOC

ISO-NE PUBLIC

23

Resources with ramping constraints

Comparison Measures

Alternative approaches
 Myopic

Multi-period single-settlement

- Coordinated Forward 24-hour multi-period,
- Comparison measures

 Computational efficiency
 Reliability
 - Economic efficiency
 - Dispatch-following incentives

look ahead 1 hour in RTM

look ahead 2 hours in RTM

look ahead 2 hours in RTM

- \rightarrow computation time
- \rightarrow constraint violation instances
- \rightarrow social surplus

ISO-NE PUBLIC

 \rightarrow uplift: lost opportunity cost

Computational Efficiency

	Avg. CPU time for pricing (seconds)	Avg. CPU time for dispatch (seconds)
Муоріс	1.9	1.9
2-period single-settlement	3.8	3.8
2-period coordinated	3.8	3.9

The coordinated approach is computationally efficient, and practical for real-time implementation.

Reliability

- Myopic approach does not yield reliable schedules
 - Pumped-storage's end-of-day SOC is violated in every scenarios
 - Future schedule is not taken into account
- 2-period single-settlement approach does not yield reliable schedules
 - Pumped-storage's end-of-day SOC is violated in every scenarios
 - Does not look far enough
- 2-period coordinated approach yields reliable schedules
 - Compensate the short look-ahead horizon by using forward schedules as guidelines.

ISO-NE PUBLIC

Economic Efficiency

	Avg. Storage surplus	Avg. Social surplus
Муоріс	\$0.031 M	\$2,246 M
2-period single-settlement	+ 87.5%	+ 0.7%
2-priod coordinated	+ 119.0%	+ 1.4%

□ The coordinated approach improves economic efficiency, especially for storage resources.

Dispatch-Following Incentive

	Avg. Storage LOC payment	Avg. Total LOC payment
Муоріс	\$84,167	\$97,368
2-period single-settlement	- 65%	- 67%
2- period coordinated	- 98%	- 90%

The myopic approach provides poor dispatch-following incentives.
 The coordinated approach provides stronger dispatch-following incentives

Much less LOC payments.

Look-Ahead Horizon

	Social surplus	LOC payment	Reliability	Pricing CPU time (second)
Муоріс	\$2246 M	\$97,368	25 violation instances	2.0
1-period coordinated	+1.3%	-88%	No violation	1.9
2-period coordinated	+1.4%	-90%	No violation	3.8
3-period coordinated	+1.4%	-93%	No violation	6.3
4-period coordinated	+1.4%	-93%	No violation	7.6

□ A longer look-ahead horizon of the coordinated approach improves economic efficiency and dispatch following incentives.

□ The coordinated approach with single look-head time period outperforms the myopic approach.

29

Summary of the Comparisons

	Undesirable		Desirable
Reliability	Myopic	Single-settlement	Coordinated
Dispatch-following incentives	Myopic	Single-settlement	Coordinated
Economic efficiency	Myopic	Single-settlement	Coordinated
Computational			Coordinated Myopic
efficiency			Single-settlement
The coordinated approach significantly improves reliability, incentives, and economic efficiency without sacrificing computational efficiency.			

Conclusion

 A coordinated multi-period scheduling and pricing scheme is proposed

Address the challenges of scheduling and pricing of intertemporal constraints

Computationally efficient

- The coordinated scheme is a significant enhancement of the myopic approach as well as multi-period single-settlement approach
 - Improve economic efficiency and reliability, dispatch-following incentives

ISO-NE PUBLIC

Questions

ISO-NE PUBLIC

