

Scalable Preventive Unit Commitment for Operation during Extreme Weather

Hurricane Forecasting Module

Power Component Failure Estimation

Power System
Preventive Operation

Uncertainty Propagation

Mostafa Ardakani (<u>mostafa.ardakani@utah.edu</u>) Farshad Mohammadi, Ge Ou, and Zhaoxia Pu

Weather Forecast and Power System Operation

- Weather forecast is used for:
 - Load forecast
 - Renewable energy forecast (solar and wind)
- Extreme weather:
 - System operators have access to weather forecast
 - Some ISOs have meteorologists onsite
 - The forecast is not systematically used to adjust operation
 - Most adjustments are made through engineering judgment

Impacts of Extreme Weather

- Extreme weather
 - Windstorms: Hurricanes, Tornados
 - Ice storms and snow storms
- Impacts:
 - Load: load forecast models capture the impacts on load
 - Generation: the impacts are often minimal
 - T&D systems: T&D failures

Example: Hurricane

- Damage level:
 Low
- Main cause: Flooding
- Wind: Rarely an issue

- Damage level: High
- Main cause:
 Wind force
- Flooding:
 May aggravate
 the situation

- Damage level: High
- Main cause:
 Wind force
- Flooding:
 May aggravate
 the situation

Power Outage Statistics

Hurricane season of 2017:

Harvey	Irma	Maria
August	September	September
• 300,000 customer outages in Texas	 6 Million customer outages in FL (59%) ~1 Million customer outages in GA (22%) 	• 100% customer outage in PR

Why Focus on Transmission?

- Power outage in the areas, not in the hurricane track, is due to transmission-level damage.
- Such outages may be manageable, through weather-aware preventive operation.
- Transmission line outages in the past:
 - Harvey: 97 lines (>139 kV)
 - Sandy: 218 lines (>115 kV)

Preventive Operation

- Systematic integration of weather forecast data in power system operation
 - Conversion of weather data into useful information for operation:
 component damage probability

Weather Forecast Module

Power Component Failure Estimation

Preventive Power System Operation

Uncertainty Propagation

Employment of Weather Data

 Would integration of weather data in power system operation reduce the size and duration of power outages?

- Availability of weather data:
 - System operators have access to weather forecast services
 - In some cases, they also have access to meteorologists onsite
- Existing technologies:
 - Pre-storm outage forecast
 - Post–storm restoration planning

- Long-term grid hardening
- Emergency operation based on engineering judgement

Weather Forecasting (Atmospheric Sciences)

- High-resolution wind field modeling
 - 1 Km horizontal
- Hurricane track and movement speed estimation
- Ensemble forecasting
 - Multiple tracks with different probabilities
- Forecast at different time scales
 - 5-day ahead, 48-hr ahead, day-ahead, hour-ahead

Transmission Failure Estimation

Structural Drawings

Finite Element Modeling

Stability under Dynamic Wind Loading

Transmission Failure Estimation cnt'd

Transmission line outage is estimated based on tower failure likelihood.

Hurricane Harvey Path

Texas System

$$P[FL, k] = 1 - P[SL, k]$$

= $1 - \prod_{m=1}^{NT} F_{R,m}(V_m)$

 $P_m = F_{R,m}(V_m)$: m^{th} individual transmission line's failure probability

P[SL, k]: k^{th} transmission line's survival probability

NT: number of the tower

 V_m : Wind Speed at the m^{th} tower

Uncertainty Management in Unit Commitment

Stochastic Programming

Robust Optimization

Engineering Judgment

Deterministic Rules (Reserves)

Challenges of Stochastic Unit Commitment

- Large uncertainty set:
 - With only 36 lines affected, for a 24-hour UC, the number of scenarios can be larger than the number of atoms in earth!
- Changing network topology:
 - Original shift factors are no longer valid
- Computational tractability is a challenge for large systems

Scenario Selection: Failure Likelihood

Scenario Selection: Criticality of the Element

Scenario Reduction

Represent the Same Scenario (Best Case or Business as Usual)

Represents the Worst Case Scenario

More Important Elements are repeated in more scenarios

Multiple Outage Handling

- Shift factors are used in UC for flow modeling
- Shift factors change as the topology of the network changes
- Single line outages can be modeled by Line Outage Distribution Factors (LODF)
- LODFs are not valid for multiple line outages
- We use flow canceling transactions or generalized LODFs
 - Iterative constraint selection for security constraints

Simulation Results: Hurricane Harvey–Texas 2000 Bus System

Computational Time:

Less than 4 hours

Conclusions

- Predictable weather-related natural hazards are the cause of about half of the blackouts in the US.
- Weather forecast data can be used to estimate component damage likelihood.
- Component damage estimations can be used to guide preventive operation.
- The simulation results confirms the effectiveness of our integrated platform in substantially reducing power outages.
- Appropriate integration of weather forecast data within power system operation can enhance system reliability.

Discussion and Future Work

- Stochastic optimization was used in this work:
 - Computationally demanding
 - Power system operation software by in large use deterministic models
 - We are currently working to develop proxy deterministic rules that:
 - Capture the majority of stochastic optimization
 - Do not substantially add to the computational burden
- The framework is general and can be applied to other weather hazards such as ice storms.

Acknowledgement

Our Research Team

Atmospheric Sciences

Principal Investigators

Graduate

Students

Dr. Zhaoxia Pu

Jiayue Xue

Farshad Mohammadi,

Civil Engineering

Dr. Ge Ou

Funding Agencies

Dr. Mostafa Ardakani

References and Further Reading

- F. Mohammadi and M. Sahraei-Ardakani, "Towards Tractable Stochastic Unit Commitment for Preventive Operation during Hurricanes," *IEEE PES General Meeting 2019*, August 2019, Atlanta, GA.
- Y. Sang, J. Xue, M. Sahraei-Ardakani, and G. Ou, "Effective Scenario Selection for Preventive Stochastic Unit Commitment during Hurricanes," 2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Boise, ID.
- M. Sahraei-Ardakani and Ge Ou, "Day-Ahead Preventive Scheduling of Power Systems During Natural Hazards via Stochastic Optimization," *IEEE PES General Meeting 2017*, Chicago, IL.
- Y. Sang, J. Xue, M. Sahraei-Ardakani, and G. Ou, "Reducing Hurricane-induced Power Outages through Preventive Operation," working paper, available at: https://ardakani.ece.utah.edu/wp-content/uploads/sites/75/2018/05/HurricanePaper.pdf
- P. A. Ruiz, E. Goldis, A. M. Rudkevich, M. C. Caramanis, C. R. Philbrick, and J. M. Foster, "Security-Constrained Transmission Topology Control MILP Formulation Using Sensitivity Factors," *IEEE Trans. Power Syst.*, vol. 32, no. 2, pp. 1597–1605, 2017.
- T. Guler, G. Gross, and M. Liu, "Generalized Line Outage Distribution Factors," *IEEE Trans. Power Syst.*, vol. 22, no. 2, pp. 879–881, May 2007.

mostafa.ardakani@utah.edu Thank You!