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Weather Forecast and Power 
System Operation

• Weather forecast is used for:
– Load forecast
– Renewable energy forecast (solar and wind)

• Extreme weather:
– System operators have access to weather forecast
– Some ISOs have meteorologists onsite
– The forecast is not systematically used to adjust 

operation
– Most adjustments are made through engineering 

judgment
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Impacts of Extreme Weather

• Extreme weather
– Windstorms: Hurricanes, Tornados
– Ice storms and snow storms

• Impacts:
– Load: load forecast models capture the impacts on 

load
– Generation: the impacts are often minimal
– T&D systems: T&D failures
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Example: Hurricane

• Damage level: 
Low

• Main cause: 
Flooding

• Wind:             
Rarely an issue

• Damage level: 
High

• Main cause: 
Wind force

• Flooding:             
May aggravate 
the situation

• Damage level: 
High

• Main cause: 
Wind force

• Flooding:             
May aggravate 
the situation
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Power Outage Statistics

• Hurricane season of 2017:
Harvey Irma Maria
August September September

• 300,000 customer 
outages in Texas

• 6 Million customer outages in FL  (59%)
• ~1 Million customer outages in GA (22%)

• 100% customer 
outage in PR
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Why Focus on Transmission?

• Power outage in the 
areas, not in the 
hurricane track, is due to 
transmission-level 
damage.

• Such outages may be 
manageable, through 
weather-aware 
preventive operation.

• Transmission line outages 
in the past:
– Harvey: 97 lines (>139 kV)
– Sandy: 218 lines (>115 kV)
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Preventive Operation
• Systematic integration of weather forecast data in power system 

operation
– Conversion of weather data into useful information for operation:  

component damage probability

Preventive Power 
System Operation

Weather Forecast 
Module

Power Component 
Failure Estimation

Uncertainty Propagation
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Employment of Weather Data

• Would integration of weather data in power system operation 
reduce the size and duration of power outages?

• Availability of weather data:
– System operators have access to weather forecast services
– In some cases, they also have access to meteorologists onsite

• Existing technologies:

Power System 
Operation

Weather 
Forecast Data

– Pre-storm outage forecast
– Post–storm restoration 

planning

– Long-term grid hardening
– Emergency operation based on 

engineering judgement
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Weather Forecasting
(Atmospheric Sciences)

• High-resolution wind field modeling
– 1 Km horizontal

• Hurricane track and movement speed estimation
• Ensemble forecasting
– Multiple tracks with different probabilities

• Forecast at different time scales
– 5-day ahead, 48-hr ahead, day-ahead, hour-ahead
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Transmission Failure Estimation

Top drift

Structural Drawings Finite Element 
Modeling

Stability under 
Dynamic Wind Loading

Tower drift
1.5%, 2%, 2.5%, 3%

10



Transmission Failure Estimation cnt’d

Transmission line outage is estimated based on tower failure likelihood.
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NT: number of the tower
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Hurricane Harvey Path Texas System

Transmission 
Tower 
Modeling

Wind Speed 
and Load 
Simulation

Monte-Carlo Simulation to generate wind speed 
and set the limit state of transmission tower
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Dynamic Response of Transmission
Tower Finite Element Model and
Lumped Mass Model

Ø 6 > #) : Top drift of the 
transmission tower exceed 
the limit

Ø 1 : 10m/s-70m/s

Fragility Curve
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Stochastic Programming

Robust Optimization

Engineering Judgment

Uncertainty Management 
in Unit Commitment 

Deterministic Rules (Reserves)



Challenges of Stochastic 
Unit Commitment

• Large uncertainty set:
– With only 36 lines affected, for a 24-hour UC, the 

number of scenarios can be larger than the 
number of atoms in earth!

• Changing network topology:
– Original shift factors are no longer valid

• Computational tractability is a challenge for 
large systems



Scenario Selection: 
Failure Likelihood
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Scenario Selection: 
Criticality of the Element

0%
20%
40%
60%
80%

100%

0 10 20

Failure Possibility

Network Feature

Failure Possibility Feature

Scenario 1 S2

S16

15



Represent the Same Scenario (Best Case or 
Business as Usual)

Represents the Worst Case Scenario

More Important Elements are repeated 
in more scenarios

Scenario Reduction



Multiple Outage Handling

• Shift factors are used in UC for flow modeling
• Shift factors change as the topology of the 

network changes
• Single line outages can be modeled by Line 

Outage Distribution Factors (LODF)
• LODFs are not valid for multiple line outages
• We use flow canceling transactions or generalized 

LODFs
– Iterative constraint selection for security constraints
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Simulation Results: Hurricane 

Harvey–Texas 2000 Bus System
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Conclusions

• Predictable weather-related natural hazards are the 
cause of about half of the blackouts in the US. 

• Weather forecast data can be used to estimate 
component damage likelihood.

• Component damage estimations can be used to guide 
preventive operation.

• The simulation results confirms the effectiveness of our 
integrated platform in substantially reducing power 
outages.

• Appropriate integration of weather forecast data 
within power system operation can enhance system 
reliability.
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Discussion and Future Work

• Stochastic optimization was used in this work:
– Computationally demanding
– Power system operation software by in large use 

deterministic models
– We are currently working to develop proxy 

deterministic rules that:
• Capture the majority of stochastic optimization
• Do not substantially add to the computational burden

• The framework is general and can be applied 
to other weather hazards such as ice storms.
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