

Scenario Generation for Two-Stage Stochastic Economic Dispatch

I. Satkauskas, M. Reynolds, D. Sigler, J. Maack, W. Jones FERC Technical Conference, June 27, 2019

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

- Problem formulation
- WIND Toolkit data
- Importance sampling
- Experimental results

Problem Formulation

The Exascale Computing Project (ECP) was established to deliver exascale-ready applications and solutions that address currently intractable problems of strategic importance and national interest. *ECP Applications Target National Problems:*

- National security, energy security (e.g. ExaWind)
- Scientific discovery, earth system, healthcare
- Economic security
 - ExaSGD: Reliable and efficient planning of the power grid

https://www.exascaleproject.org

Two-stage linear stochastic programming problem

$$\min_{\boldsymbol{x}} \quad \boldsymbol{c}^{\mathsf{T}}\boldsymbol{x} + \mathbb{E}_{\boldsymbol{\xi}}\left[L\left(\boldsymbol{x},\boldsymbol{\xi}\right)\right]$$

s. t. $A\boldsymbol{x} \leq \boldsymbol{b}$

where $L(\mathbf{x}, \boldsymbol{\xi})$ is the optimal value of the second-stage problem,

$$\min_{\mathbf{y}} \quad \mathbf{q}_{\boldsymbol{\xi}}^{\mathsf{T}} \mathbf{y} \\ \text{s. t.} \quad T_{\boldsymbol{\xi}} \mathbf{x} + W_{\boldsymbol{\xi}} \mathbf{y} \le \mathbf{h}_{\boldsymbol{\xi}}, \ \mathbf{y} \ge 0$$

and

- x first stage decision vector (e.g. thermal dispatch)
- **y** second stage decision vector (e.g. wind dispatch, wind spilled, load shed)
- $\boldsymbol{\xi}$ uncertain data (e.g deviation in wind power from forecast).

First stage:

• thermal generation costs plus expectation of second stage costs

$$\min_{\mathbf{x}} \quad \sum_{g \in G} c_g x_g + \mathbb{E}_{\boldsymbol{\xi}} \left[L\left(\mathbf{x}, \boldsymbol{\xi} \right) \right]$$

Second stage:

 Wind generation, spilling wind, and slack variable costs (i.e. overload and loss-of-load) at buses i ∈ I and wind plants w ∈ W

$$\min_{\mathbf{y}^{\pm},\boldsymbol{\omega},\boldsymbol{\omega}^{spl}} \quad \sum_{w \in W} \left(c_w \omega_w + c_w^{spl} \omega_w^{spl} \right) \quad + \sum_{i \in \mathcal{I}} \left(c_i^+ y_i^+ + c_i^- y_i^- \right)$$

Constraints

First stage:

• constraints on output of thermal generators $g \in G$

$$x_g^{min} \leq x_g \leq x_g^{max} \quad \forall g$$

ramping constraints on thermal generators

$$-R_g^{down} \le x_g - I_g \le R_g^{up} \quad \forall \ g$$

Second stage:

slack variable (loss-of-load and overload) constraints on buses

$$0 \leq y_i^{\pm} \quad \forall i \in \mathcal{I}$$

wind power constraints

$$\begin{split} 0 &\leq \omega_w \leq \omega_w^{tcst} + \xi_w \quad \forall \ w \\ \omega_w^{spl} &= \left(\omega_w^{fcst} + \xi_w\right) - \left(\omega_w\right) \quad \forall \ w \end{split}$$

Constraints continued

• power balance constraints at every node *i*

$$y_i^+ - y_i^- + \sum_{w \in W_i} \omega_w + \sum_{g \in G_i} x_g = \sum_{q \in D_i} d_q - \sum_{\substack{e=(j,i)\\(j,i) \in \mathcal{E}}} f_e + \sum_{\substack{e=(i,j)\\(i,j) \in \mathcal{E}}} f_e$$

line flow constraints

$$\underline{F}_{e} \leq f_{e} \leq \overline{F}_{e} \quad \forall \ e \in \mathcal{E}$$

• power flow physics, e.g. ACOPF and DCOPF (below)

$$B_e(\theta_i - \theta_j) - f_e = 0 \quad \forall \ e \in \mathcal{E}$$

Solving the SAA: matrix structure

$$\begin{array}{ll} \min_{\mathbf{x},\mathbf{y}_{1},\dots,\mathbf{y}_{N}} & (\mathbf{c}^{\mathsf{T}}\mathbf{x}) + \frac{1}{N} \sum_{s=1}^{N} (\mathbf{c}_{\xi_{s}}^{\mathsf{T}}\mathbf{y}_{s}) \\ \text{such that} & A\mathbf{x} & = \mathbf{h} \\ & T_{\xi_{1}}\mathbf{x} + W_{\xi_{1}}\mathbf{y}_{1} & = \mathbf{h}_{1} \\ & T_{\xi_{2}}\mathbf{x} + W_{\xi_{2}}\mathbf{y}_{2} & = \mathbf{h}_{2} \\ & T_{\xi_{3}}\mathbf{x} + \ddots & = \vdots \\ & T_{\xi_{N}}\mathbf{x} + W_{\xi_{N}}\mathbf{y}_{N} & = \mathbf{h}_{N} \\ & \mathbf{x} \ge 0, \ \mathbf{y}_{1} \ge 0, \ \mathbf{y}_{2} \ge 0, \dots, \ \mathbf{y}_{N} \ge 0. \end{array}$$

There are specialized algorithms for solving these optimization problems:

- Schur complement approaches to solving updates in interior point methods, e.g. PIPS¹.
- Progressive hedging algorithm, (e.g. http://www.pyomo.org/)

¹https://github.com/Argonne-National-Laboratory/PIPS

- In this problem formulation the uncertainty is included by taking $\mathbb{E}_{\xi}[L(x,\xi)]$, that we approximate by $\frac{1}{N}\sum_{s=1}^{N} L(x,\xi_s)$
- Since we are solving economic dispatch problem for 5-minute periods, *ξ* represents power deviation from persistence.
- $\boldsymbol{\xi} = (\xi_1, \xi_2, \dots, \xi_m)$, where ξ_i is power deviation at wind farm *i*.
- We use high-fidelity data to produce realistic wind scenarios that respect physics and spatio-temporal relations.

Data

WIND Toolkit²: domains

Figure: WRF simulation domains. (from "Overview and Meteorological Validation of the Wind Integration National Dataset Toolkit") Wind Integration National Dataset (WIND) Toolkit

- Data sets: 2-TB, 50-TB, 0.5 PB
- 2 km × 2 km grid with 20 m vertical resolution.
- 5 min time resolution: pressure, wind speed, direction, humidity, temperature, and density.
- Techno-Economic data set: 5 min time series at 120 000 wind sites.

²https://www.nrel.gov/grid/wind-toolkit.html

WIND Toolkit: power curves

Figure: Power curves used to convert modeled wind speed to power.

- Power curves were chosen according to the estimated long-term wind conditions at each site.
- Each turbine is assumed to have a rated power of 2 MW (at 100 m)

TAMU³ 200 grid (Illinois)

Figure: TAMU 200 bus grid.

- Wind capacity 760 MW (19.42%).
- 6 wind farms, 50 wind sites (NREL Wind Toolkit).

³https://electricgrids.engr.tamu.edu/electric-grid-test-cases/

TAMU 200 grid

- Wind capacity 760 MW (19.42%).
- 6 wind farms, 50 wind sites (NREL Wind Toolkit).
- 437 real turbines (USWTDB⁴).

⁴https://eerscmap.usgs.gov/uswtdb/

TAMU 2000 grid (Texas)

- 2000 buses
- Wind capacity 12574 MW (12.56%).
- 87 wind farms, 859 wind sites (NREL Wind Toolkit).

TAMU 2000 grid

- 2000 buses
- Wind capacity 12574 MW (12.56%).
- 87 wind farms, 859 wind sites (NREL Wind Toolkit).
- 7312 real turbines (USWTDB).

TAMU 2000 grid

- 2000 buses
- Wind capacity 12574 MW (12.56%).
- 87 wind farms, 859 wind sites (NREL Wind Toolkit).
- 7312 real turbines (USWTDB).

- 7 years (2007-2013) of power output data at 5-min resolution.
- One year we leave as "actuals" for experiments; 6 years are used to generate scenarios ξ.
- For each wind farm on the grid we aggregate WIND Toolkit wind sites up to farm's capacity.
- Additionally, we split our data set based on total wind power in the network: low, medium, high.

TAMU 200 grid

Figure: TAMU 200 bus grid.

- Power (760 MW) conditioning splits data into 3 sets:
- 1 low < 11 MW
- **2** 11*MW* < *medium* < 717*MW*
- 3 high > 717MW

Distribution of deviations: TAMU 200

Figure: Power conditioned distributions of deviations

Examples of scenario tables for TAMU 200 grid

	65	104	105	114	115	147	TotalPower	Deviation
IssueTime								
2008-01-09 09:40:00	-0.415083	-0.164326	-0.331099	-0.032976	-0.451123	-0.037300	10.955064	-1.431906
2008-01-09 09:45:00	-0.524133	-0.146091	-0.220279	-0.032994	-0.329175	-0.043634	9.523158	-1.296306
2008-01-09 09:50:00	-0.290003	-0.071754	-0.305224	-0.032987	-0.300771	-0.035274	8.226852	-1.036013
2008-01-09 09:55:00	-0.213800	-0.042937	-0.225679	-0.015872	-0.246981	-0.035779	7.190839	-0.781049
2008-01-09 10:00:00	-0.305855	-0.037831	-0.086708	0.004084	-0.036173	-0.029725	6.409790	-0.492209

Table: Low power

	65	104	105	114	115	147	TotalPower	Deviation
IssueTime								
2008-01-01 02:00:00	0.175488	-0.245543	-0.385107	0.026132	0.728723	1.064814	695.268688	1.364507
2008-01-01 02:05:00	0.041986	-0.255817	-0.464536	-0.003527	0.049244	0.964228	696.633194	0.331578
2008-01-01 02:10:00	-0.237243	0.049360	-0.520757	-0.022131	-0.759113	1.072492	696.964772	-0.417391
2008-01-01 02:15:00	-0.755391	0.021509	-0.258561	-0.031425	-0.657219	0.746616	696.547381	-0.934471
2008-01-01 02:20:00	-1.745687	-0.327942	-0.588913	-0.033362	-1.146570	-0.352600	695.612909	-4.195075

Table: Medium power

Distribution of deviations: TAMU 200

Figure: Low power deviations

Distribution of deviations: TAMU 2000

Figure: Medium power deviations

Importance Sampling

Importance sampling, is based on the following idea:

$$\mathbb{E}_{p}\left[L\left(\xi\right)\right] = \int L\left(\xi\right)p\left(\xi\right)d\xi = \int L\left(\xi\right)\frac{p\left(\xi\right)}{q\left(\xi\right)}q(\xi)d\xi = \mathbb{E}_{q}\left[L\left(\xi\right)R\left(\xi\right)\right],$$

where $R(\xi) = p(\xi)/q(\xi)$, $p(\xi)$ is called nominal and $q(\xi)$ is called importance distribution.

Low fidelity approach: surrogate model for $L(\mathbf{x}, \boldsymbol{\xi})$ using loss-of-load and costs of spilling wind

$$\tilde{L}(\boldsymbol{\xi}) = \begin{cases} c^{-} \sum_{w} \xi_{w} & \sum_{w} \xi_{w} > 0 \\ c^{+} \sum_{w} \xi_{w} & \sum_{w} \xi_{w} \le 0 \end{cases}$$

where c^- is cost of spilling wind, and c^+ is the cost of loss-of-load.

Nominal and importance distribution

Figure: Histograms of deviations (TAMU 200 grid, medium power)

Example scenarios: nominal

	65	104	105	114	115	147	TotalPower	Deviation	Weight
IssueTime									
2013-01-30 11:15:00	-0.055070	-0.830754	-2.231894	-0.317755	-4.533159	3.907265	585.803116	-4.061368	0.000002
2010-08-02 21:25:00	6.407320	-0.904047	-2.973480	0.437870	0.336600	0.444163	257.380896	3.748427	0.000002
2011-02-06 01:05:00	1.960588	-2.806084	-3.068696	-0.114657	-1.535399	-0.845855	441.023572	-6.410102	0.000002
2012-03-03 18:05:00	4.408884	-8.099030	-18.946797	0.278402	-3.639464	-0.837257	571.625474	-26.835263	0.000002
2008-01-19 12:45:00	2.909572	0.297896	0.433564	-0.024568	0.397683	1.013637	304.966891	5.027783	0.000002

Figure: TAMU 200 medium power scenarios

		65	104	105	114	115	147
IssueTime	ScenarioNr						
2007-07-04 02:00:00	1	-1.03562	-0.445102	-0.585549	-0.0628107	-0.747453	-0.200926
	2	-0.28241	-0.18887	1.25832	-0.0109556	0.608905	-0.0797241
	3	-2.27304	1.27761	2.28919	0.0770569	1.43255	2.62297
2007-07-04 02:05:00	1	-1.15396	0.406735	-3.35988	0.167676	-1.21149	-1.98886
	2	-0.155653	-0.513368	-0.757031	-0.0606008	-0.717922	-0.38033
	3	0.921622	3.08092	4.10388	0.0618582	0.737586	0.551277

Figure: TAMU 200 scenrios drawn from nominal distribution

Example scenarios: importance

	65	104	105	114	115	147	TotalPower	Deviation	Weight
IssueTime									
2012-10-12 14:25:00	-0.886548	-0.656891	-1.159231	0.009730	-0.049452	-0.646495	88.249340	-3.388887	1.855446e-06
2008-02-03 15:30:00	-0.293306	2.029175	3.345293	-0.379425	-2.351285	0.480209	219.020447	2.830660	4.649437e-12
2013-02-22 15:35:00	-8.879562	-0.951475	-3.166533	-0.138267	-2.658777	-1.502286	520.329205	-17.296900	9.470211e-06
2012-08-17 15:00:00	0.527659	-0.888620	-0.682046	0.035835	-1.059429	-0.085468	31.276223	-2.152069	1.178277e-06
2011-10-10 16:35:00	-0.048068	0.276023	-0.153408	-0.012002	-0.095665	0.554852	76.247409	0.521732	8.569592e-13

Figure: TAMU 200 medium power table

		65	104	105	114	115	147
IssueTime	ScenarioNr						
2007-07-04 02:00:00	1	-2.11405	-0.559398	-2.50884	-0.0236497	-1.83873	-9.94101
	2	-0.23966	-0.0533235	-2.34025	-0.20586	-0.538439	-1.5048
	3	-8.84335	-1.82405	-5.94129	-0.373219	-0.947498	-5.18819
2007-07-04 02:05:00	1	-9.67878	-7.37214	-14.9084	-0.422604	-5.41246	8.31575
	2	0.411175	-0.33989	-0.030612	0.101074	0.743205	-1.95942
	3	21.4512	-40.8249	-41.7483	-2.00545	-11.5752	-2.33755

Figure: TAMU 200 scenrios drawn from importance distribution

Experimental Results

One week economic dispatch for TAMU 200 grid

One week economic dispatch for TAMU 200 grid

NATIONAL RENEWABLE ENERGY LABORATORY

2007-07-01

2007-07-02

2007-07-03

2007-07-04

2007-07-05

2007-07-06

2007-07-07

One week economic dispatch for TAMU 200 grid

Sampling method		
мс	1,180,299	949,091
IS	1,209,337	124,102

First stage costs [\$] Second stage costs [\$]

First stage costs [\$] Second stage costs [\$]

Figure: 20 samples

1,185,960	614,669
1,218,600	26,748
	1,185,960

Figure: 40 samples

- High fidelity surrogate model for $L(\mathbf{x}, \boldsymbol{\xi})$.
- Extend to multi-period scenarios.
- More realistic physics, e.g. ACOPF.
- Extending toolset to data sets other than WIND toolkit.

- Exascale Project https://www.exascaleproject.org/project/exasgdoptimizing-stochastic-grid-dynamics-at-exascale/
- WIND Toolkit https://www.nrel.gov/grid/wind-toolkit.html
- TAMU Sythetic Grids https://electricgrids.engr.tamu.edu/electric-grid-test-cases/
- USWTDB https://eerscmap.usgs.gov/uswtdb/