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• A single specified timepoint;

• Applies the decision to the 
time period.

Generation Scheduling 
Plan

• Executed based on net 
load forecasts;

• Actual power curve: 
unknown, continuous;

• Forecasted power output: 
known, predicted at 
discrete timepoints, piece-
wise linear function. 

Problems

For non-specific timepoints:

• Different power flow 
distributions;

• Constraints satisfaction  
are not guaranteed.

Questions

How to select the specified timepoints to 
better represent the entire time period?
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Linear-time Interval (LI)

Norm of node voltage derivatives

Proposition 2  Under a LI, for a d-th order derivative of node voltage vectors, it follows:

where       is double factorial,    is the condition number: 

By selecting a proper coefficient              ,    is corrected as follows: 

Time-varying node voltage properties

Property 1  Under a LI, the norms of node voltage derivatives present a “U” curve when the 

order of derivatives increases. 

Proposition 1  Under a LI, in the rectangular coordinate, the norm of k-th derivative of Jacobian 

satisfies: 

Norm of Jacobian matrix

where x is node voltage vector. 



Zongjie Wang, C. Lindsay Anderson 13
Cornell University

Linear-time Interval (LI)

Property: Under a LI, each nodal voltage vector 

is approximate linear function of time.  
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Combined Time-varying Node Voltage Function

Taylor series for the beginning timepoint t0 and the ending timepoint te are shown as

where

is given by the following numerical differentiation:

Combined node voltage function:

Property: Under a LI, for the combined node voltage function, the order of 

maximum node voltage error is restricted within 10-4. 
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LI Algorithm for Time-varying Power Flow

1) LI partition
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LI Algorithm for Time-varying Power Flow

1) LI partition

M+1 combined discrete timepoints                        partitions the specified time period into m

combined LIs                        . 

2) Node voltages at discrete timepoints

First run the power flow at t0, the node voltage at t1 is calculated from                              , calculate 

node voltages at other discrete timepoint until tm.

4) Calculations for other parameters

Combined node voltage function,                                                                               is applied to 

calculate node voltages on any timepoint within a LI.

3) Node voltages at LIs

Distributions of other parameters at any timepoint of an interval can be also calculated.
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Case Studies
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Case Studies

• Maximum voltage error---12th time interval:

• Minimum voltage error---15th time interval:

• For any timepoint---the order of each node voltage error 

is within 10-4.       High accuracy

First four nodes with the largest power 

variation ranges in the 21st LI:

Maximum voltage errors for each 

linear-time interval within 24h



Zongjie Wang, C. Lindsay Anderson 24
Cornell University

Case Studies (the 21st LI)

Voltage computational results from combined 

node voltage functions in the 21st LI.

Observation 1: Under a LI, real and imaginary 

parts of node voltage curves are approximate 

linearity with respect to time.       
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Case Studies (the 21st LI)

Observation 3:

The median and 

two terminal 

timepoints have 

the smallest

voltage errors---

close to 0. 

First four maximum voltage errors 
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Orders of the first 
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voltage errors are 

all within 10-5. 

Voltage computational results from combined 
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Period Optimal Power Flow (POPF)

• Energy integral property

• Smallest voltage error 

• Terminal constraint satisfaction

TOPF POPF
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Period Optimal Power Flow (POPF)

• Objective Function
(median timepoint)

• Constraints (median timepoint)

• Constraints
(Two terminal timepoints)

Power flow equality constraints

Voltage constraints

Generator constraints

Line power constraints
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POPF Algorithm
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POPF Algorithm

POPF in adjacent LIs:

where is initial values of controllable active power;

is initial values of node voltage magnitudes;

is total number of terminal timepoints.
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Dispatch Control Hierarchy 

• Dispatch system

• Resources 

• Constraints
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Coherent Scheme
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POPF results in short-term scheduling (118-bus)

CVN and CVA on branch power of the TOPF 

under short-term scheduling

CVN and CVA on node voltage of the TOPF 

under short-term scheduling

Generation cost of TOPF and POPF under short-term scheduling

• All the constraints are satisfied in the POPF;

• TOPF results in power constraint violations in all the 

24 LIs and a number of voltage constraint violations;

• In general, objective function values of POPF are 

close to TOPF; some cases: POPF is smaller than 

TOPF;



Zongjie Wang, C. Lindsay Anderson 34
Cornell University

POPF results in Real-time Dispatch (118-bus)

Simulation results of POPF and TOPF under real-time dispatch.

• Real-time dispatch timescale: 1.5h;

• Divided into six LIs of 15 minutes;

• POPF satisfies all the constraints;

• TOPF produces over-limits in both 

branch power and voltage 

magnitudes;

• Compared with short-term 

scheduling, TOPF violation levels 

are generally lower;

• For TOPF and POPF, objective 

function values in real-time are 

larger than short-term.
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POPF results in Real-time Dispatch (118-bus)

Simulation results of POPF and TOPF under real-time dispatch.
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Period optimal power flow (POPF)

• Take median timepoint as 
objective function;
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Conclusions

POPF applications in dispatch system

Simulation case studies on a modified IEEE 
118-bus system demonstrate the 
effectiveness of the proposed POPF model. 
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