

Period Optimal Power Flow Model in Power Systems with High Penetrations of Intermittent Power Sources

Names: Zongjie Wang, C. Lindsay Anderson

CONTENT

- 1 Background
- **Desirable Characteristics and Approaches**
- **3** Linear-time Interval
- 4 Period Optimal Power Flow
- **5 Dispatch Control Hierarchy**
- **6** Simulation Case Studies
- 7 Conclusions

Generation Scheduling Plan

- Executed based on net load forecasts;
- Actual power curve: unknown, continuous;
- Forecasted power output: known, predicted at discrete timepoints, piecewise linear function.

Generation Scheduling Plan

- Executed based on net load forecasts;
- Actual power curve: unknown, continuous;
- Forecasted power output: known, predicted at discrete timepoints, piecewise linear function.

Generation Scheduling Plan

- Executed based on net load forecasts;
- Actual power curve: unknown, continuous;
- Forecasted power output: known, predicted at discrete timepoints, piecewise linear function.

Traditional Optimal Power Flow (TOPF)

- A single specified timepoint;
- Applies the decision to the time period.

Generation Scheduling Plan

- Executed based on net load forecasts;
- Actual power curve: unknown, continuous;
- Forecasted power output: known, predicted at discrete timepoints, piecewise linear function.

Traditional Optimal Power Flow (TOPF)

- A single specified timepoint;
- Applies the decision to the time period.

Problems

For non-specific timepoints:

- Different power flow distributions;
- Constraints satisfaction are not guaranteed.

Generation Scheduling Plan

- Executed based on net load forecasts;
- Actual power curve: unknown, continuous;
- Forecasted power output: known, predicted at discrete timepoints, piecewise linear function.

Traditional Optimal Power Flow (TOPF)

- A single specified timepoint;
- Applies the decision to the time period.

Problems

For non-specific timepoints:

- Different power flow distributions;
- Constraints satisfaction are not guaranteed.

Questions

How to **select** the specified timepoints to better represent the entire time period?

Present a fast and accurate OPF model over a time period

Reduce the complexity of finding solutions under non-linear time-varying equations

Theoretically guarantee system's economy and security over a time period

Desirable Characteristics

Coherent scheme between short-term and real-time dispatch

Cornell University Zongjie Wang, C. Lindsay Anderson

Present a fast and accurate OPF model over a time period

Reduce the complexity of finding solutions under non-linear time-varying equations

Theoretically guarantee system's economy and security over a time period

Desirable Characteristics

Coherent scheme between short-term and real-time dispatch

Approaches

Linear-time interval (LI): active and reactive power injections of each node are linear functions of time

Present a fast and accurate OPF model over a time period

Reduce the complexity of finding solutions under non-linear time-varying equations

Theoretically guarantee system's economy and security over a time period

Desirable Characteristics

Coherent scheme between short-term and real-time dispatch

Approaches

Linear-time interval (LI): active and reactive power injections of each node are linear functions of time

Under LI, each node voltage is **approximate linear function** of time.

Present a fast and accurate OPF model over a time period

Reduce the complexity of finding solutions under non-linear time-varying equations

Theoretically guarantee system's economy and security over a time period

Desirable Characteristics

Coherent scheme between short-term and real-time dispatch

Approaches

Linear-time interval (LI): active and reactive power injections of each node are linear functions of time

Under LI, each node voltage is **approximate linear function** of time

Combined timevarying node voltage function: the order of maximum voltage error is restricted within 10⁻⁴

Present a fast and accurate OPF model over a time period

Reduce the complexity of finding solutions under non-linear time-varying equations

Theoretically guarantee system's economy and security over a time period

Desirable Characteristics

Coherent scheme between short-term and real-time dispatch

Approaches

Linear-time interval (LI): active and reactive power injections of each node are linear functions of time

Under LI, each node voltage is **approximate linear function** of time

Combined timevarying node voltage function: the order of maximum voltage error is restricted within 10⁻⁴

Period optimal power flow (POPF): objective function—median timepoint; constraints-two terminal timepoints

Linear-time Interval (LI)

Norm of Jacobian matrix

Proposition 1 Under a LI, in the rectangular coordinate, the norm of k-th derivative of Jacobian satisfies: $\| \boldsymbol{J}^{(k)}(t) \| \le \| \boldsymbol{J}(t) \| \| \boldsymbol{x}^{(k)}(t) \|, (k \ge 0)$

where x is node voltage vector.

Norm of node voltage derivatives

Proposition 2 Under a LI, for a *d*-th order derivative of node voltage vectors, it follows:

$$\|\mathbf{x}^{(d)}(t)\| \le (2d-3)!! \rho_t^{d-1} \|\mathbf{x}^{(1)}(t)\|^d, (d \ge 2)$$

where $(\bullet)!!$ is double factorial, P_t is the condition number: $P_t = \|\boldsymbol{J}^{-1}(t)\|_p \|\boldsymbol{J}(t)\|_p$, $(p = 1, 2, \infty)$

By selecting a proper coefficient $\alpha_t \in (0,1)$, P_t is corrected as follows:

$$\|\mathbf{x}^{(d)}(t)\| \approx (2d-3)! [\rho_t^{d-1}\|\mathbf{x}^{(1)}(t)\|^d, (d \ge 2) \rho_t = \alpha_t \rho_t \le \rho_t$$

Time-varying node voltage properties

Property 1 Under a LI, the norms of node voltage derivatives present a "U" curve when the order of derivatives increases.

Linear-time Interval (LI)

Norm of Jacobian matrix

Proposition 1 Under a LI, in the rectangular coordinate, the norm of k-th derivative of Jacobian satisfies: $\| \boldsymbol{J}^{(k)}(t) \| \le \| \boldsymbol{J}(t) \| \| \boldsymbol{x}^{(k)}(t) \|, (k \ge 0)$

where x is node voltage vector

Propo

Property: Under a LI, each nodal voltage vector is approximate linear function of time.

$$||x^{(u)}(t)|| \le (2d-3)!! \rho_t^{u-t} ||x^{(t)}(t)||, (d \ge 2)$$

where $(\bullet)!!$ is double factorial, ρ_t is the condition number: $\rho_t = \|\boldsymbol{J}^{-1}(t)\|_p \|\boldsymbol{J}(t)\|_p$, $(p = 1, 2, \infty)$

By selecting a proper coefficient $\alpha_i \in (0,1)$, ρ_i is corrected as follows:

$$\|\mathbf{x}^{(d)}(t)\| \approx (2d-3)! [\rho_t^{d-1} \|\mathbf{x}^{(1)}(t)\|^d, (d \ge 2) \rho_t = \alpha_t \rho_t \le \rho_t$$

Time-varying node voltage properties

Property 1 Under a LI, the norms of node voltage derivatives present a "U" curve when the order of derivatives increases.

Combined Time-varying Node Voltage Function

Taylor series for the beginning timepoint t_0 and the ending timepoint t_e are shown as

$$\begin{cases} \boldsymbol{x}(t,t_0) = \overline{\boldsymbol{x}(t_0)} + \Delta t_0 \boldsymbol{x}^{(1)}(t_0) + \frac{1}{2} \Delta^2 t_0 \overline{\boldsymbol{x}}^{(2)} \\ \boldsymbol{x}(t,t_e) = \overline{\boldsymbol{x}(t_e)} + \Delta t_e \boldsymbol{x}^{(1)}(t_e) + \frac{1}{2} \Delta^2 t_e \overline{\boldsymbol{x}}^{(2)} \end{cases} \quad \text{where } \begin{cases} \Delta t_0 = t - t_0 \\ \Delta t_e = t - t_e \end{cases}$$

 $\bar{x}^{\scriptscriptstyle{(2)}}$ is given by the following numerical differentiation:

$$\overline{x}^{(2)} = \frac{1}{\Delta T} (x^{(1)}(t_e) - x^{(1)}(t_0))$$

Combined node voltage function:

$$x(t) = x(t, t_0) + \alpha(t)(x(t, t_e) - x(t, t_0)), \ \alpha(t) = \frac{1}{\Delta T} \Delta t_0$$
$$x(t) = x(t_0) + \Delta t x^{(1)}(t_0)$$

Property: Under a LI, for the combined node voltage function, the order of maximum node voltage error is restricted within 10⁻⁴.

1) LI partition

M+1 combined discrete timepoints t_l , (l=0,1,...,m) partitions the specified time period into m combined LIs T_l , (l=1,2,...,m).

1) LI partition

M+1 combined discrete timepoints t_l , (l = 0,1,...,m) partitions the specified time period into m combined LIs T_l , (l = 1,2,...,m).

2) Node voltages at discrete timepoints

First run the power flow at t_0 , the node voltage at t_1 is calculated from $x(t) = x(t_0) + \Delta t x^{(1)}(t_0)$, calculate node voltages at other discrete timepoint until t_m .

1) LI partition

M+1 combined discrete timepoints t_l , (l = 0,1,...,m) partitions the specified time period into m combined LIs T_l , (l = 1,2,...,m).

2) Node voltages at discrete timepoints

First run the power flow at t_0 , the node voltage at t_1 is calculated from $x(t) = x(t_0) + \Delta t x^{(1)}(t_0)$, calculate node voltages at other discrete timepoint until t_m .

3) Node voltages at LIs

Combined node voltage function, $x(t) = x(t,t_0) + \alpha(t)(x(t,t_e) - x(t,t_0)), \ \alpha(t) = \frac{1}{\Delta T} \Delta t_0$ is applied to calculate node voltages on any timepoint within a LI.

1) LI partition

M+1 combined discrete timepoints t_l , (l = 0,1,...,m) partitions the specified time period into m combined LIs T_l , (l = 1,2,...,m).

2) Node voltages at discrete timepoints

First run the power flow at t_0 , the node voltage at t_1 is calculated from $x(t) = x(t_0) + \Delta t x^{(1)}(t_0)$, calculate node voltages at other discrete timepoint until t_m .

3) Node voltages at LIs

Combined node voltage function, $x(t) = x(t,t_0) + \alpha(t)(x(t,t_e) - x(t,t_0)), \ \alpha(t) = \frac{1}{\Delta T} \Delta t_0$ is applied to calculate node voltages on any timepoint within a LI.

4) Calculations for other parameters

Distributions of other parameters at any timepoint of an interval can be also calculated.

Modified IEEE 118-bus system.

Total power curves within 24h

- Maximum voltage error---12th time interval: 8.4×10⁻⁴
- Minimum voltage error---15th time interval: 1.4×10^{-5}
- For any timepoint---the order of each node voltage error is within 10⁻⁴.

- Maximum voltage error---12th time interval: 8.4×10⁻⁴
- Minimum voltage error---15th time interval: 1.4×10^{-5}
- For any timepoint---the order of each node voltage error is within 10-4.
 High accuracy

First four nodes with the largest power variation ranges in the 21st LI:

Case Studies (the 21st LI)

Voltage computational results from combined node voltage functions in the 21st LI.

Observation 1: Under a LI, real and imaginary parts of node voltage curves are approximate linearity with respect to time.

Case Studies (the 21st LI)

Voltage computational results from combined node voltage functions in the 21st LI.

Observation 1: Under a LI, real and imaginary parts of node voltage curves are approximate linearity with respect to time.

8.0

Time (h)

1.5 × 10⁻⁵

1.5 Bus 9

Bus 16

Bus 10

Bus 117

0.5

-1.5

0.2

0.4

0.6

0.8

1

Time (h)

Observation 2:

Orders of the first four maximum voltage errors are all within 10⁻⁵.

Case Studies (the 21st LI)

Voltage computational results from combined node voltage functions in the 21st LI.

Observation 1: Under a LI, real and imaginary parts of node voltage curves are approximate linearity with respect to time.

Observation 2:

Orders of the first four maximum voltage errors are all within 10⁻⁵.

Observation 3:

The median and two terminal timepoints have the smallest voltage errors---close to 0.

Period Optimal Power Flow (POPF)

- Energy integral property
- Smallest voltage error
- Terminal constraint satisfaction

Period Optimal Power Flow (POPF)

 Objective Function (median timepoint)

 $\forall T_k : \min f(\boldsymbol{U}, \boldsymbol{X}, t_k^m)$

Constraints (median timepoint)

$$\forall T_k : \boldsymbol{h}(\boldsymbol{U}, \boldsymbol{X}, \boldsymbol{t}_k^m) = 0$$

Power flow equality constraints

$$\forall T_k : \begin{cases} h(U, X, t_{k-1}) = 0 \\ h(U, X, t_k) = 0 \end{cases}$$

Voltage constraints

$$\forall T_k : \begin{cases} V_{\min} \leq V(t_{k-1}) \leq V_{\max} \\ V_{\min} \leq V(t_k) \leq V_{\max} \end{cases}$$

Generator constraints

$$\forall T_k : \begin{cases} \boldsymbol{P}_{\min}^c \leq \boldsymbol{P}^c(t_{k-1}) \leq \boldsymbol{P}_{\max}^c \\ \boldsymbol{Q}_{\min}^c \leq \boldsymbol{Q}^c(t_{k-1}) \leq \boldsymbol{Q}_{\max}^c \\ \boldsymbol{P}_{\min}^c \leq \boldsymbol{P}^c(t_k) \leq \boldsymbol{P}_{\max}^c \\ \boldsymbol{Q}_{\min}^c \leq \boldsymbol{Q}^c(t_k) \leq \boldsymbol{Q}_{\max}^c \end{cases}$$

Line power constraints

$$\forall T_k : \begin{cases} \boldsymbol{P}^{line}(t_{k-1}) \leq \boldsymbol{P}_{\max}^{line} \\ \boldsymbol{P}^{line}(t_k) \leq \boldsymbol{P}_{\max}^{line} \end{cases}$$

Constraints
 (Two terminal timepoints)

POPF Algorithm

POPF Algorithm

44

POPF in adjacent LIs:

$$\begin{cases}
\mathbf{P}_{0}^{c}(t_{k}^{m}) = \mathbf{P}^{c}(t_{k-1}^{m}) \\
\mathbf{V}_{0}^{c}(t_{k}^{m}) = \mathbf{V}^{c}(t_{k-1}^{m})
\end{cases}, (k = 1, 2, ..., N)$$

where ${m P}_0^c$ is initial values of controllable active power;

 V_0^c is initial values of node voltage magnitudes;

 $N \hspace{0.1cm}$ is total number of terminal timepoints.

77

Dispatch Control Hierarchy

31

- Dispatch system
- Resources
- Constraints

Logic relation diagram for the power balancing of dispatch control system

Coherent Scheme

Equivalent load

- **1. Zongjie Wang**, Zhizhong Guo. On Critical Timescale of Real-time Power Balancing in Power Systems with Intermittent Power Sources [J]. *Electrical Power Systems Research*, 2018, 155:246-253.
- **Zongjie Wang**, Zhizhong Guo. Quantitative Characterization of Uncertainty Levels of Intermittent Power Sources [J]. *Journal of Renewable and Sustainable Energy*, 2018, 10(4): 043304.

POPF results in short-term scheduling (118-bus)

Generation cost of TOPF and POPF under short-term scheduling

- All the constraints are satisfied in the POPF;
- TOPF results in power constraint violations in all the 24 LIs and a number of voltage constraint violations;
- In general, objective function values of POPF are close to TOPF; some cases: POPF is smaller than TOPF;

CVN and CVA on node voltage of the TOPF under short-term scheduling

81000

80500

POPF results in Real-time Dispatch (118-bus)

Simulation results of POPF and TOPF under real-time dispatch.

₋inear-time Interval	Parameters	TOPF	POPF
0h-0.25h	CVN-Power	9	0
	CVA-Power (p.u.)	2.3479	0
	CVN-Voltage	2	0
	CVA-Voltage (p.u.)	0.0001	0
	Generation cost (\$/h)	92030.4	92429.1
0.25h-0.5h	CVN-Power	14	0
	CVA-Power (p.u.)	4.0001	0
	CVN-Voltage	4	0
	CVA-Voltage (p.u.)	0.0004	0
	Generation cost (\$/h)	91823.3	92304.6
0.5h-0.75h	CVN-Power	14	0
	CVA-Power (p.u.)	6.4342	0
	CVN-Voltage	2	0
	CVA-Voltage (p.u.)	0.0001	0
	Generation cost (\$/h)	92384.1	92738.9
0.75h-1h	CVN-Power	15	0
	CVA-Power (p.u.)	4.3408	0
	CVN-Voltage	4	0
	CVA-Voltage (p.u.)	0.0001	0
	Generation cost (\$/h)	91859.3	92381.0
1h-1.25h	CVN-Power	7	0
	CVA-Power (p.u.)	1.756	0
	CVN-Voltage	0	0
	CVA-Voltage (p.u.)	0	0
	Generation cost (\$/h)	92247.2	92849.4
1.25h-1.5h	CVN-Power	15	0
	CVA-Power (p.u.)	2.8245	0
	CVN-Voltage	4	0
	CVA-Voltage (p.u.)	0.0001	0
	Generation cost (\$/h)	92192.0	92696.3

- Real-time dispatch timescale: 1.5h;
- Divided into six LIs of 15 minutes;
- POPF satisfies all the constraints;
- TOPF produces over-limits in both branch power and voltage magnitudes;
- Compared with short-term scheduling, TOPF violation levels are generally lower;
- For TOPF and POPF, objective function values in real-time are larger than short-term.

POPF results in Real-time Dispatch (118-bus)

Simulation results of POPF and TOPF under real-time dispatch.

Linear-time Interval	Parameters	TOPF	POPF
	CVN-Power	9	0
	CVA-Power (p.u.)	2.3479	0
0h-0.25h	CVN-Voltage	2	0
	CVA-Voltage (p.u.)	0.0001	0
	Generation cost (\$/h)	92030.4	92429.1
0.25h-0.5h	CVN-Power	14	0
	CVA-Power (p.u.)	4.0001	0
	CVN-Voltage	4	0
	CVA-Voltage (p.u.)	0.0004	0
	Generation cost (\$/h)	91823.3	92304.6
0.5h-0.75h	CVN-Power	14	0
	CVA-Power (p.u.)	6.4342	0
	CVN-Voltage	2	0
	CVA-Voltage (p.u.)	0.0001	0
	Generation cost (\$/h)	92384.1	92738.9
0.75h-1h	CVN-Power	15	0
	CVA-Power (p.u.)	4.3408	0
	CVN-Voltage	4	0
	CVA-Voltage (p.u.)	0.0001	0
	Generation cost (\$/h)	91859.3	92381.0
1h-1.25h	CVN-Power	7	0
	CVA-Power (p.u.)	1.756	0
	CVN-Voltage	0	0
	CVA-Voltage (p.u.)	0	0
	Generation cost (\$/h)	92247.2	92849.4
	CVN-Power	15	0
1.25h-1.5h	CVA-Power (p.u.)	2.8245	0
	CVN-Voltage	4	0
	CVA-Voltage (p.u.)	0.0001	0
	Generation cost (\$/h)	92192.0	92696.3

Period Optimal Power Flow Model in Power Systems with High Penetration of Intermittent Power Sources

37

Linear-time Interval (LI)

- Node voltage is approximately linear function of time;
- Key to discretize and linearize the time-varying problems.

Period Optimal Power Flow Model in Power Systems with High Penetration of Intermittent Power Sources

Linear-time Interval (LI)

- Node voltage is approximately linear function of time;
- Key to discretize and linearize the time-varying problems.

Combined node voltage function

- Simplifies the complexity of finding solutions under non-linear time-varying equations;
- Maximum node voltage error is restricted within 10⁻⁴, higher accuracy.

Period Optimal Power Flow Model in Power Systems with High Penetration of Intermittent Power Sources

Linear-time Interval (LI)

- Node voltage is approximately linear function of time;
- Key to discretize and linearize the time-varying problems.

Combined node voltage function

- Simplifies the complexity of finding solutions under non-linear time-varying equations;
- Maximum node voltage error is restricted within 10⁻⁴, higher accuracy.

Period Optimal Power Flow Model in Power Systems with High Penetration of Intermittent Power Sources

- Take median timepoint as objective function;
- · Take endpoints as constraints;
- Guarantee economy and security.

Period optimal power flow (POPF)

Linear-time Interval (LI)

- Node voltage is approximately linear function of time;
- Key to discretize and linearize the time-varying problems.

Combined node voltage function

- Simplifies the complexity of finding solutions under non-linear time-varying equations;
- Maximum node voltage error is restricted within 10⁻⁴, higher accuracy.

Period Optimal Power Flow Model in Power Systems with High Penetration of Intermittent Power Sources

- Take median timepoint as objective function;
- Take endpoints as constraints;
- Guarantee economy and security.

Period optimal power flow (POPF)

Simulation case studies on a modified IEEE 118-bus system demonstrate the effectiveness of the proposed POPF model.

POPF applications in dispatch system

Presenter: Zongjie Wang

Institute: Cornell University

Thanks

For Listening