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 Background and motivation

« Autonomous grid dispatch and control based on PMU measurements
» Deep Reinforcement Learning
« Autonomous voltage control
* Demo

« How to architect/tune an effective self-learning agent?

« Discussion/other applications



Challenges

GENERATION

TRANSMISSION

Industrial &
@ Commercial

Grand challenges: the increasing dynamics
and stochastics in the modern power grid,
making it difficult to design and implement
optimal control actions in real time

* Increased penetration of renewable energy
e Demand response

« New market behavior

» Energy storage

« Experience/model based control
suggestions using limited studied cases are
either conservative or risky for operation

Mogawats
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Net load - March 31

The well-known
Californian duck
curves showing
abrupt changes in
system net load

&

Frequency Deviations Across New York - New Jersey, /1403, by zip code

Credit: California ISO /
Jordan Wirfs-Brock

System fast dynamic :
responses under bal
extreme events — the
August 2003 North
American Blackout

D Trajoctory

" |'gl'[i » 1623

Time

Need for accurate and fast wide-area
monitoring system to detect potential issues
« PMU coverage is increasing, but still limited

« Known data quality issues affect apps

o Lack of preventive measures to mitigate
operational risks

Need for effective optimal control
suggestions in real time to support operators
« Most operational rules are offline determined
« Either by experiences or projected simulatgons




The Gap CEIRINA

« Past efforts were mostly focused on enhancing/increasing grid situational awareness using advanced
modeling, various data analysis approaches, machine learning, etc.

» Very few WAMS apps can instruct operators what to do in real time due to the lack of effective
approaches that can transform massive amount of measurements directly into actionable decisions in
real time.

Power Systems «

A

l—' PMUs

Synchrophasor

Updated every /‘ measurements

fraction of a sec -
Situational Awareness
... —» Decision —»| Action —
Perception( Comprehension Projection

_ _ Operators are HARDLY Real-time decisions/actions
Conducted by machine(s) in involved; decision making  are very difficult, if any, only
fraction of sec. to seconds. from seconds to mins. for post-event analysis.
O Potential apps of WAMS are limited, and GEIRINA wish to bridge this gap. ~  swesssssmanee
L On Sept. 25 2018, DOE announced investments to improve resilience and
reliability of the nation’s energy infrastructure using PMU measurements
and big data, Al, machine learning technologies. bepartment of Energy (008]
Office of Electricity (OE)
v" .. .to inform and shape development and application of fast grid analytics and BIG DATA ANALYSIS OF SYNCHROPHASOR DATA

Funding Opportunity Announcement (FOA) Number: DE-FOA-0001861

sub-second automatic control actions that preclude costly cascading grid OULAZES” connumbe su1z2 cectnon movemeottoerey ey, seserc

v ...PMU-based automated controls, better grid asset management, and real time
monitoring for modeling...”




. _ . GEIRINA
The Grid Mind Vision GEIRI NORTH AMERICA

« Grid Mind: A measurement-driven, grid-interactive, self-evolving, and open
platform for power system autonomous dispatch and control.

L In the short term, we want to create an example of AlphaGo Zero in power systems.
O In the mid-term, Grid Mind serves as an assistant to grid operators.

U In the long term, Grid Mind will be the core of power system operation ROBOT.
Goal: To develop a tool that can transform massive amount of measurements into actionable
decisions in real time.

4—’ Power Systems }:

Synchrophasor
measurements

| Situational Awareness
... »| Decision » Action
Perception( Comprehensio Projection

SCADA
+ | Power Systems *
WAMS

——e——m——m—— ] — lmage; — — {Reinfarcement, _ _ -
feedback

| Linear/hybrid Grid States Video, text,
” SE etc.

\ 4 \ 4 \4

Goal / Future

Grid Mind Action

Grid Eye

Situational . :
AWArENeSS Decision making )
e e £ i) o Wi Execute in sub-second

Operator Offline training 3
experience using HPC

\ 4
\ 4




GEIRINA

GEIRI NORTH AMERICA

Outline

« Autonomous grid dispatch and control based on PMU measurements

» Deep Reinforcement Learning



ML in a Nutshell

Supervised
Learning

error target
labeled
data
—>

In Out

Application

v Classification
v’ Predict a target
numeric value

Common Algorithms

k-Nearest Neighbors
Linear Regression
Decision Trees
Na'wve Bayes

SVM

O
O
O
O
O
o Neural Networks

Credit: Elena Mocanu, TU/e

Unsupervised
Learning
unlabeled
data
In Out
Application
v’ Clustering

v’ Visualization

v Dimensionality
reduction

v" Anomaly detection

Common Algorithms

o k-Means

o Hierarchical Cluster
Analysis

o Principal Component
Analysis

many unlabeled &
few labeled data

In Out
Application

v Google Photos
v Webpage classification

Common Algorithms

o Combination of
unsupervised and
supervised learning
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Reinforcement
Learning

reward environment

& state l_O‘_ ______
1 i

—> i
In OQut 7

Application

v DeepMind’s AlphaGo
v’ Fire-extinguish robots
v Grid Mind

Common Algorithms

o Dynamic programming
o Monte Carlo
o Temporal Difference
(TD)
v' Q-Learning
v SARSA



Reinforcement Learning (RL)

 Learn what to do and how to map situation to action.

d Poppy’s example.

 The RL system: agent and environment. At
each time step t : Observe

Route,
location,

) The agent material,
v'1) executes action a, my tone...
v'2) observes states s,
v'3) receives a scalar reward r,

* The environment
v'1) receives action a,
v'2) emits states s, ,
v'3) issues a reward r,,
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Stepinaphd s

vy

J Reinforcement function

* Trial-and-error interactions stattes
« Mapping states/action pair to reinforcement
» Maximization of the sum of reward/value

reward

acti

Environment

tay

on

A
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RL Agent

O An RL agent may include one or more of the following components:

* Policy: agent’s behavior function
v" A map from state to action
o Deterministic policy a = m(s)
o Stochastic policy m(als) = P(als)
» Value function: prediction of future reward
v How much reward can be obtained if | perform action a in state s
* Model: agent’s representation of the environment
O Q-value function gives expected total reward
v from state s and action a
v" under policy =
v" with discount factor vy
Q"(s,a) = E(rgs1 + ¥Te42 + VTesz + o s, a)
O An optimal value function is the maximum achievable value

Q*(5,0) = maxQ"(s,) = Q™ (5,0)



Q-Learning GEIRINA
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Example: Mouse vs Cliff!

age: 1739856 [delay=1]

Blue-mouse
Red-cliff
Green-cheese

{up, down, right, left} position/location
Qable. ~ —
| S0 S 52 S3 Sq I
aol| +1.53 | +0.97 | +0.83 | -0.53 -0.02
aill| +2.19 | +3.85 |-1.24 +0.62 | +0.19
QS.A) — Q(B.2) T T a|| 023 +539 | +0.62 ||+2.49 | | +0.82 .7 +2.49
az|| +0.18 | +1.43 | +0.65 | 1432 | +1.83

So
do
S1
ap

Q(S.A) — Q@B2) — > 4249

az
S3

ds

Sy

COOEE

10
lhttps://studywolf.wordpress.com/2013/07/01/reinforcement-learning-sarsa-vs-qg-learning/



https://studywolf.wordpress.com/2013/07/01/reinforcement-learning-sarsa-vs-q-learning/
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Deep Learning in a Nutshell

 Deep learning is a general-purpose framework for representation learning
» Given an objective

Learn representation that is required to achieve objective

Directly from raw inputs

Using minimal domain knowledge

Represent the world using nested hierarchy of concepts (each using simpler ones)

Why deep learning Machine Learning
T _I . Ca
Deep learning & - hj — — e
(0]
2
g Input Feature extraction Classification Output
£
@ Deep Learning
» Car
@
How do data science techniques scale with amount of data? Input Feature extraction + Classification Output

Source: https://towardsdatascience.com

11
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Deep Reinforcement Learning (DRL)

O DRL=DL+RL
1 DL is a general-purpose framework for representation learning

O RL is a general-purpose framework for decision-making in a dynamic
environment

 We seek a single agent that can solve a human-level task
 RL defines the objective
* DL gives the mechanism
« RL+DL -> general intelligence

J Use deep neural networks to represent
* Value function
* Policy
* Model

12
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« Autonomous grid dispatch and control based on PMU measurements

« Autonomous voltage control

13
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Autonomous Voltage Control (AVC) GEIRI NORTH AMERICA

(Considering load variation, renewable intermittency and contingency conditions)

__________________________________________________________________________________________

Obijective:
Maintain steady-state voltages at all buses within the range of 0.95-1.05pu after |
disturbance(s) or contingencies from any given initial operating point. |

__________________________________________________________________________________________

BUS v Change generator voltage set point | All buges_
\oltages | Voltage | v/ Switchable shunts on & off || stay within
Controller | v Adjust transformer tap ratios a secure
range
\Jan9 Y,

~ Increasing complexity, e.g., renewable energies
Challenges for | |ncreasing scale, e.g., wide-area power systems
conventional < _ _ :
technologies High nonlinearity, e.g., nonlinear loads

. Fast response speed, e.g., power electronics

14



DRL Formulation for AVC
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Firstly, let’s define V; as the voltage phasor of bus i (including both magnitude and phase angle).

V; of buses
of interest

P, Q of
branches

Control objective
All V;’s (of interest) stay within normal operation zone

App of Grid Mind

DRL Generator voltage
> - Agent set points
’ [0.95, 0.975, 1.0,
states reward / 1.025,1.09],
Sp Tt actipn
e+t at Shunt cap value,
| _ transformer tap,
» Environment «— etc.
Sr41

15
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AVC Training Algorithm

Control objective
All'V,’s (of interest) stay within normal operation zone

Generator voltage set

points / DRL agent for AVC ﬂ,{ Environment |
/DQN: I & s R

5(927|\5| (ilgcrftggs[%%%’] Calculate control action PR Reward: || State 4\
. , 1.0, 1. , 1. using a=argmaxQ(s|6") with
@ecaying e-greedy policy J Update DRI agent Vi of buses
: : (DON: '
DDPG (continuous):  /pppe: ™ | 0620 <ol +7maXQ(S,,a,)_Q(S’a)J of interest
0.95-1.05 Calculate control action
using a=u(s|¢") with ( DDPG:
\decaying random noises ~ /, "%-.._[VWJ z%ZVaQ(S,a)VWﬂ(SI6"’) E’ Q Ol'i]:
App of Grid Mind P N {} o i
ini trainin
training | // ! 3 ! Suggested < : g
ConolZon Grid Mind (DRL Agent) —sion = o
State & 7 /: performance
Reward
S I( Implement
Grid Simulator  L—— PowerGrid <2t

16
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DRL Formulation for Voltage Control-Reward

A

Diverged solution 1 Large penalty
2 1.25 _
E Violation zone Negatlve reward ~—eo
S 105 . :
= ° o ° Normal operation zone
S 1.0
(48]
= 0.95 ° ° °
(<)
& Violation zone | Negative reward —°
E 0.8
Diverged solution Large penalty |—°

Buses of interest in a power system

Large reward (+Rp), V V; € normal operation zone
Reward at one iteration={ Large penalty (—P,), 3 V; € diverged solution
Negtive Reward (—Ry), 3 V; € violation zone

Final Reward =Sum(Reward)/number of iterations

17
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Case Study _ N GEIRI NORTH AMERICA
Testing Condition

*|EEE 14-bus System

10Kk episodes (created randomly)
S e *60%~120% random load change
I - A single-NN DQN agent

*2 layers with 20 neurons/layer
*Without using regularization

¢ 120 action space (permutation of 5
e choices)

Testing system: IEEE 14-Bus system
System Info.

* Active load; 259 MW
* Reactive load: 73.5 MVAr

2. for Episode i
3. p,(i+1)=0.95p,(i)

© 14 buses T $0it Tearns from the scratch ;
* 5 generators ! o - _ |
e 11 loads ' 1. Initializing the probability of using
e 17 lines | random control actions to be |
« 3transformers i p(0)=1 |
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DQN Agent for IEEE 14-bus System GEIRI NORTH AMERICA

60%-120% random load changes are applied to each episode

Test on 10k new cases

T R I A MMM A ORI, — X X

o5t 2 iteration steps o |

O RO H I H— RO — U ——
%0r 3 Iteration steps

—
(1%

85| - B % 85
o

80 80

Reward

75 75

0r 5 iteration steps 0t

65 - : : ‘ : ‘ ‘ ‘ : : . ! I ! ! L ! I ! I |
65
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Episode Episode

After 10,000 episodes’ learning, the designed DQN agent starts to master the voltage
control problem by making decisions autonomously.

19



A Closer Look at the Results
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Either no violations
e i e or one action taken
95 - | Two actions taken
1
=Rl ;g\ i " Threeactionstaken | 0 0 i
= N | ' 60%-120% random
85 ! ! |
= o e e . System load changes
QX sor- \ ! .
\ 1
\ 1
75 \ 1 . .
o S ! Five actions taken
70 \\ l.
\ 1
65 1 | \I\ 1 L 1 ll | 1 1 1 1
0 1000 200‘8\ 3000 4000 5000'l 6000 7000 8000 9000 10000
\ . 1
. Episode Actlons Vset (Eplsode 8 and 5000)
\ 1
\\\ : genl uset gend_ uset gen3_vset genb uset gend vset episode
T . I I I I e . o e R R S S,
\ '. : _x 105 . 1.025 1 0.95 0.975 g !
. e e e
\ | L1025 1 0975 Q95+ 1 1.05 8 |
- e L Tl I I e ey e R L I e S ey S Sy S Sy By S P B
N : AT ToETs T AT R8s T6ss 105 5000, |
 States — Bus \oltage (Eplsode 8 and 5000)
busl bus2 bus3 bus4 *_ bus5 ', ,busE bus?’, bus8 ‘ ' busg ,’ . bus10  busld bus12 bus13 busi4  episode
______________________________________________________________ L Dusl’Z _ [DUSL3 |JUS’E episoce |
L____l06 1045 101 101797 102435 107 . x06204 _1_“29_ (L5682 105137 105756 1.05568 105237 103698 ____8_ |
! 1.05  1.025 1 097375 09756 0. 95/ 0974 0975, 395352 0.95255 0.94802 0.93591 0.9342 0.93076 g |
! 1.025  0.975 0.95 0.95572 0959@9 217 100554 1.05 10.99402 0.98678 0.99011 0.98523 0.98225 0.96972 g !
E""ibﬁ"'1'0'4'5""1'0'1' (01609 101036~ TA07 106047 109 .1' 05409  1.04913  1.05583 1.05456 1.05036 1.03339 5000 |
v TTT0975 7 T 71 T 095 09627 0096341 1.025 1.01158  1.05 vi.00331 0.99898 1.00803 1.00845 1.00369 0.98341 5000 !



Discrete vs Continuous Action Space

QL.

Environment  Agent agent and environment
actionk-1 [ | statek actionk {1 state k+1

Max L-#reward k (/ j Max F--+reward k+1

| \ | >
Time k Time k+1
DL (DNN): policy and
Q-function updating

RL: interaction between

DQN: using multiple layers of nonlinear process units
(neural network) for feature extraction and transformation;
Using value function to select action (e.g., e-greedy)

DDPG: using one deep neural network for actor and
another one for critic. The action is directly generated by
actor based on the value from critic.

GEIRINA

GEIRI NORTH AMERICA

Discrete state (Q-Table)
& discrete action
(a=argmaxQ(s|@))

Continuous state (Q-
Network) & discrete
action a=argmaxQ(s|@")

Continuous state (Q-
Network) & continuous
action a=u(s|o#)

21
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DDPG Agent for IEEE 14-bus System

60%-120% random load changes are applied to each episode

Either no violations
or 1 iteration step

Learning from scratch

Test on 10k new cases

250 290
200 200
o

g 150 E 150
a;) 100 | 2 iteration steps® |

c]: 50 El: %
ol 3 iteration steps  °f
_50:« -50 -

-100 [~

5 iteration steps

1 1 -l 1 1 1 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Episode

-200

0

-150

-200

1 1 1 | 1 1 1 1 1 ]
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Episode

0

After 6,000 episodes’ learning, the designed DDPG agent starts to master the voltage
control problem by making decisions autonomously.

22
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DQN and DDPG Agents for 200-bus System GEIRTNORTH AMERICA
60%-120% random load changes are applied to each episode
Regional voltage control is - DON Agent o vilationor oe

considered for DQN agent:
5 adjacent generators with 30 150
interconnected buses in the
neighborhood subsystem

Training >< Testing ——

—

o

(=]
T

Three iteration steps

Episodes Rewards
W
S
T

mwx—x—x*x——%x—%«—x————%—x—x———}x——— X XX T — —— — ==
XK X X X | .
0?4%77””5 7777777777777777777777777777777 e g ————
N | More than five
-50 ' ! ‘ ! - ! I jteration steps
0 2000 4000 6000 8000 10000 12000 14000
DDPG Agent | No violation or one

200 wl@[&_ﬂ on Step

—

(o

(e}
T

Training

“ Testing—

X

Three iteration steps
ERISRDC DMK — — — — — M g — — 1 — — e | —

|
|
|
|
»
»
|
|
|
|
J
3
|
I
I
|

Episodes Rewards

TR % - 0 o oI 3 & S X

000 TBOOIUIOBIO OIOSKIOCIOBIOBIOBE SO X - HOCHK— - X X —— — —— —
W;&&%x xx))b?%):)g x%ﬁxﬂxx X

250 \ L ! L ‘ ‘ | iteration steps

0 2000 4000 6000 8000 10000 12000 14000
Episodes

After 10,000 episodes’ learning, the designed DRL agents start to master the voltage
control problem in the 200-bus system by making decisions autonomously.



Further Testing Results-200 Bus System E.E!.!E !\ERII(}\

» Test the DRL agent under different loading conditions: heavily loaded, fully loaded,
and lightly loaded.

* Consider different topological changes. For example, random line tripping
contingency or N-1 conditions.

DDPG; 60%-140; Enforcing Q limit Either no violation DQN; 60%-140%; Enforcing Q limit
or 1 iteration step

L it e ettt St R DR LD R LR B g

300 300 |

200 200 -

2 iteration steps

Reward

100 S—

T

Reward

3 iteration steps

o o
-100 =100 |
More than 5

J X104 - - =200 . .
0 0.5 1 15 o 25 3 Iteration Steps 0 0.5 1
Episode

'|.|5 2 2?5 3 x10*
Episode
Observations:

1. The designed agents work very well under all testing conditions.

2.  The results comply with basic power system principles and engineering judgement very
well.

3. The proposed framework is promising for power system autonomous operation and control.



Summary of Results: IEEE 14-bus System
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< Training ! Testing —
(Case 1—40000) 1_(Case 40001-50000)
| |
Percentage of Different No. of Voltage Violation in Various Cases
L
1 o
N e Sl o »
NN & 1 % 19 a7 4 B 9 |
1 _
1
1
0% 20% 40% 60%: 80% 10034 0% 20% 40% 60% 80% 100%
: :
200 : =
E 100, 100 100 IDU
= 80 | 80 80 80 :au
150" 60 :r &0 60| 60| !60
a0 HE 10 a0 20
20 i 20 20| 20| :20
-E 100 ’ = Ne.:!lter;linnsﬁ 2 :' ’ . annf Iteratins 2 ¢ 2 Nc?Df \tErak\ins 2 ° Nc,nlltzeralinns 3 = ’ MNo. of Iterations E
% o e —_—— ,,._? 1
o« i Reward Increasing
50 i H )
i 1
i 1
i 1
. : I DQN Agent
i 1
i 1 With Action
i : No Action
-5 10000 0000 30000 F000p 50000
Episode 1 .
: ey Agent Improving
200 ; ‘ '
108 | 100 | 100
= 80| i 80 i 80|
150|g & o0 )
E 40 : 40 } 40
< 2 20 1 20
B2 100 12345678aaTasaaTgezaans . 0 1 2 3 3 N ) 1 : o )
E No. of Iterations J| No. of lterations. ; No. of Iterations No. of Iterations No. of Iterations
cc-.:J 1 - [ ) 1
| \ 1
>0 / ) B
- il ; Reward Increasmd
1 ] 1
| | ' DDPG Agent
i ] 1 With Action
i i 1 No Action
10000 20000 30000 4ooci0 50000

Episode

25



Summary of Results: Hlinois 200-bus System

<

Training

(Case 1—10000)

GEIRINA
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Testin
Tz 9 ___ >
1 (Case 10001-14000)

- - - L) - -
Percentage of Different No. of Voltage Violation in Various Cases
L]
1 o
PO 1 2% 20 25 89] 4D A5 sb'-}', 20 25 02
R . 2°° i S S S S St
\' I
P DO
1
1
0% 20% 40% 60% 80% 100% :0% 20% 40% 60% 80% 100%
H
1
200
) ) Note that the
e o 0 a0 w0 1, o
Leoi o o " « 5 I DQN Agent
§ 40| 140 40| a0 1 40| "o 4o
pl | NESNSNE Y FUSSENN | PANSN R PO SSESN RS R SE only controls
] -
g 100 ] Reward Increasing 5 adjacent
; .,—I 8 4 CUIE 20 L0 e D D U AD S G DO ac
& H generators
50 1
1
B i
. :
o ; DQN Agent
1 with Action
: | No Action
-5 2000 4000 6000 . 000 100?0 12000 14000
Episode H
o)y Agent Improving
-
200 -
100 joa b 100, 10l
e w 0 0 o
: : : 3
£ 20 20 20| 20| 2'
- 100 H : 4& i
2 | A ; Reward:Increasing
o
1
50 :
- ; ! DDPG Agent
- 1
| : With Action
1 No Action
-5 2000 4000 6000 000 1000!0 12000 14000 26

8
Episode
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Outline

 Grid Mind: Autonomous grid dispatch and control based on PMU
measurements

e Demo

27
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Demo of Grid Mind: Autonomous Voltage Control

GrE d Mind

L sinont O About Us

Grid Mind Flowchart

1) Modifying the loa
2) switching off a line

Step 2
Check Voltage Violation
Maintain the bus voltage

within 0.95 — 1.05 Run Power Flow Simulation to see whether any
voltage violation exists

. Normal range of the voltage: 0.95 — 1.05
Illinajs 200 Bus System

Run Grid Mind

Run Grid Mind to Eliminate the voltage
v violation by controlling the voltage on the
e e e e e et e e >
generator buses

& Systam Amaytics Groop ar GEIRINA-

28
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Step 1: Perturb the System

GrEd Mind ...

L sisnout € About Us

System Information Grid Real State
Tlinois 200 bus system includes: 200 buses, 38 225 Tines, 160 loads, on capacity: 3160 MW and 1240 MVAL
Grid Components
Load Centrol - Trip Line
] Normal Bus & Line
Currant Load Percentage: Total Load: N’”'“L_’“ . I Generator *
Selact 3 Line to trip: \
140.00% 1808.55 MW Load Values - e —
[ e s 2
SLFI6TIS B 2030 -
Random Load Adjustment LENT2T
Random Scale Load (0.6-1.8): Random Std of load (0-0.1) * o
— - SLF142T86 e —
St Random Load 60-20
I evzumy o \

. . oy L 1N —

Single Load Adjustment : 'a .

Pick One Load No: Scale this Load (0.6-1.4) SLFISTI7 A Ve |
“Youtripped : LFTT101 . N

—— . |

/ | —
Load State L] y
Limiz

]
v

2 ! . .

L S /
= . e T

“~
il -I| I"II .‘.".|||||||..I|‘1| |..|| " ||| I|J|I|||I II1 |h|| IH I.‘I 2 Q
_ i

©2019 Copyright: AL & System Amytics Group at GERINA
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Step 2: Check for Woltage Violations

GrEdMind ... [ L5mon @ touts

Current Grid State Grid Real State
Voltage Upper Limit- 1.05 Voltage Lower Limit: 0.95 Shaw ouly GridModsl | Show only Leed Cames
Bus Voltage outside Bound Count-
Grid Mind is ready to run, please go to step 3: Run Grid Mind ! Grid Components
Norml Bus & Line
= =
Load Values
106 =
8 H 20
2 20-30
108 3040
40-50
el 50-60
60-80
80-100
103 100+
L0
1.01
1.00
099
098
087
056
Ll
054
BuslD
20 40 L] %0 100 120 140 160 180 200 /
Y oitage Magnitude Vahues( p.u)
T
09 10 11

<<< Go to Step 1: Re-perturb Grid System

© 2019 Copyright: AL & Systam Amaiytics Group at GEIRINA
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Step 3: Grid Mind Suggests Actions and Performance

Gr& d Mind

Home _

L signOut @ About Us

Curreat Grid State Grid Real State
Gnd llows Skow oxly Vol
GEN @Bus 49: 0970 — 0972 (p) GEN @Bus 50: 0970 —> 0997 (p)
GEN@Bus 51: 0970 > 0985 (pu) GEN @Bus 52: 0970 > 1032 (pu) Grid Components

GEN.@Bus 53: 0970 > 1003 (pw)
GEN.@Bus 67: 0,980 > 0.998 (pu)
GEN.@Bus 69: 0.980 > 1001 (pu)
GEN.@Bus 71: 0.980 > 0990 (pu)
GEN.@Bus 73: 0980 > 0992 (pu)
GEN.@Bus 77- 1040 > 0997 (pu)

GEN.@Bus 65: 0980 > 0984 (pn)
GEN @Bus 68: 0.980 > 1012 (p)
GEN.@Bus 70: 0.980 > 1013 (pu)
GEN.@Bus 72: 0980 > 1012 (pu)
GEN.@Bus 76: 0.980 > 1009 (pn)
GEN.@Bu= %0: 0970 > 1017 (p)

[E==Y)

8
Volisge (pn)

101

1.00

0.8

097

056

e

054 y

Go to Step 1: Re-perturb Grid System

Normal Bus & Line
Generator = = SRS
i\ / \

Load Values R

I 020 \ /
Il 2030 \ X : e -~

3040 \ 8 S
40-50 \ \l Y ey o
50-60 3
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Outline
» Background and motivation

 Grid Mind: Autonomous grid dispatch and control based on PMU
measurements

* Deep Reinforcement Learning
« Autonomous voltage control

* Demo
* How to architect/tune an effective self-learning agent?

* Discussion/Other applications
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» Considerations

There are tons of parameters, settings, and different formulations that need to be

designed and specified. And subtle difference in them may generate very
different results.

» Testing Roadmap

1. Consider different sizes of action space

2. Consider different neural network structures
*  Number of neural networks
*  Number of layers
*  Number of neurons
3. Consider different regularization methods
« Batch normalization
» Layer dropout
4. Consider different DRL formulations
*  Deep-Q-Network (DQN)
»  Deep-Deterministic-Policy-Gradient (DDPG)
5. Consider dynamic adjustment process
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Summary of Tuning Results
DQN Agent

Measures Conclusion
Change action space from 5*  Performance deteriorates when
to 5° action space size grows
Single-DQN and double- A double-DQN has a better
DON are tested performance over a signle-DQN
Test with 2/3 layers with Subtle performance degradation is
20/40 neurons observed when increasing lay. or
neu.
Using batch normalization Applying regularization methods
and layer dropout significantly improves performance
DDPG Agent
Measures Conclusion
Using batch normalization Applying regularization methods
and layer dropout significantly improves performance
Dynamically increase or The agent is able to solve the

decrease the voltage setting voltage problem using minimum
point for a small step in each  iterations after well trained.

iteration
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» The proposed DRL framework demonstrates very promising results for power

system autonomous dispatch and control, using measurements from advanced
sensors, PMU as an example.

» When reactive resources are sufficient and/or distributed unevenly, Grid Mind can
find very fast and effective solutions for fixing voltage issues.

> Research team will train and enhance Al agents to find optimal solutions for
scenarios with limited reactive resources.

Thorough testing has been carried out to study the influence of various factors,
which sheds light on the design of an effective agent/robot.

Therefore, we have duplicated an example of Alpha Zero, Grid Mind, for
power systems.

With extensive offline calculation and online learning, in the mid-term, Grid
Mind serves as an assistant to grid operators; in the long term, Grid Mind will
be the core of power system operation ROBOT.

With proper modifications, the proposed framework can be applied to many
other applications.
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Thank you!

Please refer to the following sites for more information:

https://www.qgeirina.net/assets/pdf/gridmindppt.pdf

https://www.qgeirina.net/assets/pdf/GridMindDemo JD4.mp4
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