

Pacific Northwest MATIONAL LABORATORY GridPACKTM: An HPC Platform for Better Grid Efficiency and Resilience

FERC Technical Conference: Increasing Real-Time and Day-Ahead Market Efficiency and Enhancing Resilience through Improved Software

June 25-27, 2019

Yousu Chen Senior Research Scientist

PNNL is operated by Battelle for the U.S. Department of Energy

- The power grid is growing more complex, more dynamic with more renewables and smart grid technology
 - Increased grid complexity in modeling and simulation
 - Increased challenge in operation and control
 ✓ Requiring faster operator responses
- Today's tools are not sufficient to handle the increased complexity
 - Dominated by serial codes
 - Take longer time for more complex applications
 - ✓ More challenging for dynamic power grid

Challenge: HPC Implementation Is NOT Easy

- Difficult to extend vendors' legacy source code to HPC version
 - Need to re-organize/rewrite the code

Pacific

• Most of power system engineers have little experience in HPC programming

GridPACKTM Objective

- An open source grid-specific HPC programming library/framework
 - Lower the threshold of HPC development
 - Allow power grid application developers to focus on algorithms, instead of parallel computing
 - Reduce the cost and effort of developing HPC power grid simulations
- A shortcut to develop and test HPC applications
- An vehicle to test with vendors' legacy codes

www.gridpack.org

GridPACKTM Approaches

- Create abstractions to hide indexing calculations and communication from application developers
- Promote software reuse by encapsulating functionality
- Simplify usage of advanced libraries
- Create application modules for use in more complicated workflows

Current Status

- Wide variety of solvers and parallel linear algebra available
- Prebuilt modules available
 - Power flow, State estimation, Contingency analysis, Dynamic simulation, Dynamic state estimation
- Robust support for task-based execution
 - Both Windows and Linux
- GridPACK has been used in
 - Other DOE projects in AGM, GMLC, and ECP
 - Academia (Clemson University)
 - Papers based on GridPACK appearing in literature
- Talking to vendors as a platform for HPC prototyping and testing

WECC (Western Electricity Coordinating Council) network partitioned between 16 processors

Application Examples

- Contingency Analysis (CA)
- Dynamic Simulation
- Dynamic Security Assessment (DSA) under uncertainty
- Task manager to support Windows-based tools

7

Example 1: Contingency Analysis (CA)

- Implemented based on GridPACK task manager to assign contingencies to cores based on their availability
- Collect results of separate calculations in a distributed way to help user focus on useful information
 - Performance index for contingency ranking
 - Deviation of power flow from the base case
 - Deviation of bus voltage from the base case
 - Frequency of violations
 - Identify vulnerable portion of the grid

Extract Meaningful Information Out of CA Data

- Contingency ranking based on Performance Index
- Deviation of maximum real power among all contingencies from base case

Branch ID

9

Top Contingency 1

• 250 MW needs to flow through this line if branch connecting buses 10275 and 10873 fails

1.1

Computational Performance on CA

- Test case: open European model with full N-1 branch contingencies (~20K)
- Near linear speedup
- Allow more contingency cases simulated in a shorter time to have a more complete picture
 - Include more low voltage level contingencies
 - Full AC contingency analysis

Simulation time (wall-to-wall) with different number of cores

Example 2: Dynamic Simulation

- Core function to perform transient analysis based on Differential **Algebraic Equations**
- Include detailed dynamic models and relay models
- A time consuming process in today's practise

		Dynamic Simula	tion App
DS	S Bus Component		
	Dasa Caparatar	Base Exciter	Base
	Base Generator	Base Governor	Base
	Pasa Conorator	Base Exciter	Base
	Base Generator	Base Governor	
	:		
	GENCLS	EXDC1	V
	GENROU	ESST1A	W
	GENSAL	ESST4B	G

GridPACK dynamic simulation mini-framework

Dynamic Simulation Performance with Detailed Models

- Simulation details
 - WECC system of 17,000 buses with detailed dynamic models and relay models.
 - 20 seconds simulation, results compared with Powerworld.
- Achieved Faster-than-real-time simulation with 16 cores
 - Powerworld took ~1 minutes (data in memory) (3X faster)

Total Solution Time (seconds)

72.9	
45.0	
31.0	
23.0	
19.5	

Example 3: Dynamic Security Assessment under Uncertainty (1)

- DSA: Dynamic Simulation (DS) with Contingency
- Two-level parallelization to make full use of computing resources
 - Level 1: Task-based for contingencies
 - Level 2: multiple cores for individual dynamic simulation

Example 3: Dynamic Security Assessment under Uncertainty (2)

- DSA under uncertainty to address forecast errors under uncertainty
- Need to consider multiple scenarios (more task level parallelization)
- Need a framework to seamlessly like data from different applications

rtainty zation) cations

Test Result with the ESCA-60 System

Simulation time (sec)	10
Time step (sec)	0.005
# of scenarios	127
# of contingencies	10
# of cases	1270
# of monitored generators	4

# of cores	Time (sec)	Speedup
2	240	2
5	100	4.8
11	50	9.6
23	23	20.5
46	12.5	38.3

DSA with Uncertainty Test Results using the ESCA-60 System

Test Result with a WECC System

Simulation time (sec)	20
Time step (sec)	0.005
# of scenarios	240
# of contingencies	1
# of cases	240
# of monitored generators	2

# of cores	Time (sec)	Speedup
46	1218	46*
92	652	86
184	340	165
368	182	308

DSA with Uncertainty Test Results using a WECC System

*: assume perfect speedup at 46-core

n - Carisson Maria Is	e D. Girbal Online In	Q & O 🖬	
Construction and the			Coler bookstan
			Plots -
			1
-		_	
			_
2,900	3.000	3.500	4,000

Example 4: GridPACK Task Manager

- Create a framework for multi-task simulations capable of executing Windows based tools on Linux-based HPC machines
 - Leverage Wine application
- Being leveraged by Dynamic Contingency Analysis Tool (DCAT) for running PSS/E based simulation on Linux cluster machines
- Generic to be applied to other Windows based simulation tools
 - Breakthrough point to allow Windows based commercial tools access HPC resource

DCAT + GridPACK

- WECC system for 300 cases
 - 4,722 seconds with 80 cores, a speed up of 70 was achieved
 - ✓ 30% reduction comparing against a 80-core Windows server (6,776 seconds)
 - 2,700 seconds with 160 cores

Incorporating Commercial Tools

- Vendors can make software available as a library that can be incorporated as modules to extend GridPACK functionality
 - Enable commercial tools to be integrated with more complex workflows
 - Focus on more efficient data management and analysis
 - Create License Manager for running commercial tools in HPC environment

Conclusions

- GridPACK is a full framework for developing HPC power grid applications
 - Minimize the requirement of HPC programming
 - Provide necessary elements to develop broader and more complicated functions
- Some applications already available for use
 - Powerflow, contingency analysis, dynamic simulation, state estimation, dynamic state estimation
- Performance has been demonstrated with in multiple projects
- Focus on demonstrating value of HPC to power grid community
 - Working with vendors and industry stakeholders
 - Outreach to academic institutions

Acknowledgements and Contacts

- GridPACK is mainly supported by OE Advanced Grid Modeling (AGM) program
 - Other supports from DOE GMLC 1.4.18 and DOE Exascale Computing Program (ECP)
- Project team
 - Computer Scientist
 - ✓ Bruce Palmer (PI)
 - ✓ William Perkins
 - ✓ Slaven Peles

- Power system engineers
 - ✓ Renke Huang
 - ✓ Shrirang Abhyankar
 - ✓ Zhenyu Huang
- Contact: Yousu Chen yousu.chen@pnnl.gov
- Downloads and documentation available at <u>www.gridpack.org</u>.
- Questions and comments to <u>gridpack.account@pnnl.gov</u>.

Thank you

