Modelling of Resilient Electricity Generation after Cascading Collapse

New England Case Study

Presentation of the Foundation for Resilient Societies

Thomas S. Popik, Chairman and President

All data and conclusions are preliminary pending review with ISO-New England
Executive Summary

- New England has minimal energy production and storage; region is dependent on imports
- We modelled cyber/physical attack scenario
 - Loss of gas compressor stations and SCADA control
 - Cascading collapse of Northeast electric grid
- Key findings:
 - With careful use of gas line pack, coal and petroleum stored on-site, and dual fuel plants, rolling blackouts can be largely avoided for several weeks
 - But without coal and nuclear plants, model projects persistent blackouts
 - Retirements of oil-fired plants also risk blackouts
New England Grid as Case Study in Limited Energy Storage
Electricity Flows into New England

- **New York: 1-9**
 - AC ties

- **Hydro-Quebec: 10-11**
 - Highgate HVDC
 - Phase II HVDC

- **New Brunswick: 12-13**
 - AC ties
Modelling of Resilient Electricity Generation and Demand
Cascading Collapse Scenario
Commencing on January 1st

- Combined cyber/physical attack at 6pm load peak
 - Loss of compressors for Northeast natural gas pipelines
 - Cascading collapse of ISO-New England grid
- All energy import into New England stops
- All nuclear power plants trip and SCRAM
- Resupply of oil-fired plants is difficult or impossible
- New England must rely almost entirely on its own stored energy sources for two weeks
 - Hydro-Quebec HVDC imports resume after restart
Methodology

- Use ISO-NE load profile from January 1-15, 2018
- Renewable generation from same time period
 - Wind, solar, landfill gas, wood, municipal waste, etc.
- Develop baseline profiles of resources over time
 - Natural gas, oil-fired, coal, nuclear, hydro, imports, DR
- Heat rates and BTU content of fuel from EIA for fossil fuel generators
- Matched EIA Form 860 for fossil fuel ramp rates
- Modelled start time and ramp for nuclear plants
- Model electricity generated at unit level
- Model fuel consumed at plant level
ISO-New England Generation Fuel Mix
Scenario Start at 18:00 Hours on January 1st
August 14, 2003 Nuclear Plant Trips

Percent of Overall Power Capacity

Days Since Cascading Collapse

August 14, 2003 Nuclear Plant Trips
Key Assumptions

- Gas pipeline line pack is near daily maximum
 - 34% of line pack available for electricity generation
- All oil tanks at generation plants are full
- Dual-fuel plants run exclusively on oil
- Mystic Generating Station is fully operational
- Distrigas LNG tanks full; 80% of re-gas for Mystic
- River flow for hydroelectric plants near maximum
- No electricity imports except HVDC hydropower
- No transmission constraints
- Nuclear plants receive NRC approval to operate
New England Natural Gas Consumption
January 2018

Source: EIA Natural Gas Consumption by End Use
Estimation of Fuel Tank Capacities

Source: Google Earth, Resilient Societies analysis
New England Energy Scenarios
Gas-Fired Generation Profile

Megawatts

Hours After Cascading Collapse
New England Energy Scenario After Cyber/Physical Attack During January with 2018 Generation Fleet
New England Energy Scenario After Cyber/Physical Attack
During January with All Coal and Nuclear Plants Retired

- Hydro River Flow
- Coal-Fired
- Demand Response
- Hydro Imports
- Nuclear
- Oil-Fired Baseload
- Renewables
- Gas-Fired
- Oil-Fired Peakers
- Peaking Hydro Discharge
- Peaking Hydro Charge
- Load Shed
New England Energy Scenario After Cyber/Physical Attack During January with ISO-NE “At Risk” Plants Retired
Summary Conclusions

- With current generation fleet, rolling blackouts after cyber/physical attack could be limited and manageable.
- If generation capacity with fuel stored on-site retires, load sheds could be one-third to one-half of peak demand.
 - Repeated challenges with cold-load pickup over many days.
 - Too large a shortfall for effective demand response.
- More generation capacity with zero or limited on-site energy storage will not protect against rolling blackouts.
 - Natural gas generators dependent on non-firm contracts.
 - Dual-fuel plants with only a few days of energy storage.
 - Renewables inherently limited by wind and daylight hours.
- Risk of major societal disruptions without on-site energy.
 - Hard to discriminate between critical and non-critical loads.
 - Blackouts for hospitals, fire stations, police, jails, pharmacies, etc.
For More Information

- To get a copy of our presentation, please send an email to: info@resilientsocieties.org

- Foundation for Resilient Societies is an IRS-approved 501(c)(3) charitable organization with the mission of critical infrastructure protection. Learn more by visiting www.resilientsocieties.org

- Contact Info:
 Foundation for Resilient Societies
 52 Technology Way, Suite 4E1
 Nashua NH 03060
 855-688-2430