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Introduction

• Inertia on the power system is an important issue for study and 
analysis. With the national movement to low inertia green energies, 
the lack of inertia on the power system could be a significant issue. 

• The purpose of this paper is to include inertia in a power system 
optimization of the IEEE 30-bus system. 



Inertia on the Power System

• KE= ½ Jω2

• KE is the Kinetic Energy or Stored Energy of our Rotating Mass
• KE is in MW-s or MJoules for transmission power system analysis
• J is the Moment of Inertia of the Mass
• ω is the Speed of the Rotor

• Here we can see the rotor and stator of a synchronous generator:



Inertia on the Power System

• Define an inertia constant (H) for generators
• H is proportional to the stored energy in the rotor of the generator
• Stored Energy (E) is proportional to the Moment of Inertia (J) and 

velocity of our rotating mass
• As the mass of the rotor increases, Moment of Inertia increases (J)
• Thus, Kinetic or Stored Energy (E) of the unit increases as the Moment 

of Inertia increases
• H increases as Stored Energy Increases



Inertia on the Power System

 As a Unit’s Inertia Constant (H) increases, there is more stored energy (or 
kinetic energy) on a per MVA Basis

 In order to calculate Kinetic Energy on the system, the sum of the 
H*MVArating for each online unit must be obtained

KE(t) = SUM (Hi*MVAi)

 How much kinetic energy and inertia do we need?
 We want our system to arrest frequency drops before there is too steep a decline 

in frequency
 As more non-synchronous generators (wind and solar) with lower inertia constants 

enter our system, the inertia may not be adequate to arrest frequency before a 
steep decline occurs 



Inertia on the Power System

 Arrest Frequency Decline due to a Large Generator Trip
 From the EPRI Power Systems Dynamics Tutorial. EPRI, Palo Alto, CA, 2009:



Objective Function

• The objective function of generation cost is minimized subject to 
constraints of 

• active power generator limits, 
• active power reserves, and 
• system inertia. 

• As generation is lost on the system, frequency drops. The early 
response of the system comes from the inertia on the system. With 
the replacement of large synchronous machines by renewable 
resources, which are often lower inertia units, the need to maintain a 
system inertia-constant (Hsys) becomes a necessary goal of power 
system planners and operators.



Minimizing Generation Cost without Reserves

• Obj.Fn.:𝑚𝑚𝑚𝑚𝑚𝑚 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑃𝑃𝑔𝑔𝑔𝑔) = 𝑎𝑎 + 𝑏𝑏𝑃𝑃𝑔𝑔𝑔𝑔 + 𝑑𝑑𝑃𝑃𝑔𝑔𝑔𝑔2 (7)
• subject to
• C1: 𝑃𝑃𝑙𝑙𝑙𝑙 < 𝑃𝑃𝑔𝑔𝑔𝑔
• C2: 𝑃𝑃𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑃𝑃𝑔𝑔𝑔𝑔 < 𝑃𝑃𝑔𝑔𝑔𝑔𝑚𝑚𝑎𝑎𝑚𝑚



Minimizing Generation Cost with Reserves & 
Inertia Constraints
• Obj1: 𝑚𝑚𝑚𝑚𝑚𝑚 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑃𝑃𝑔𝑔𝑔𝑔) = 𝑎𝑎 + 𝑏𝑏𝑃𝑃𝑔𝑔𝑔𝑔 + 𝑑𝑑𝑃𝑃𝑔𝑔𝑔𝑔2 + 𝑎𝑎 + 𝑏𝑏𝑅𝑅𝐶𝐶𝑅𝑅𝑔𝑔𝑔𝑔 +
𝑑𝑑𝑅𝑅𝐶𝐶𝑅𝑅𝑔𝑔𝑔𝑔2

• C1: 𝑃𝑃𝑙𝑙𝑙𝑙 + 𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 < 𝑃𝑃𝑔𝑔𝑔𝑔 + 𝑅𝑅𝐶𝐶𝑅𝑅𝑔𝑔𝑔𝑔
• C2: 𝑃𝑃𝑙𝑙𝑙𝑙 < 𝑃𝑃𝑔𝑔𝑔𝑔
• C3: 𝑃𝑃𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑃𝑃𝑔𝑔𝑔𝑔 < 𝑃𝑃𝑔𝑔𝑔𝑔𝑚𝑚𝑎𝑎𝑚𝑚
• C4: 𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 < 𝑅𝑅𝐶𝐶𝑅𝑅𝑔𝑔𝑔𝑔
• C5: 𝑃𝑃𝑔𝑔𝑔𝑔 + 𝑅𝑅𝐶𝐶𝑅𝑅𝑔𝑔𝑔𝑔 < 𝑃𝑃𝑔𝑔𝑔𝑔𝑚𝑚𝑎𝑎𝑚𝑚
• C6: 0 ≤ 𝑅𝑅𝐶𝐶𝑅𝑅𝑔𝑔𝑔𝑔



Designated Inertia Constants

• Assume that the system inertia constant is constrained to 𝐻𝐻𝐶𝐶𝐻𝐻𝐶𝐶 =5 
pu-s. The higher the inertia constant, the better the system can 
reduce the rate of change of frequency after a significant drop in 
generation. The inertia constant for each unit is designated in Table 2.

Bus No. Inertia Constant 
(pu-s) 

Suggested 
Description 

1 6 Medium Size Coal 
2 6 Medium Size Coal 
5 3 Renewable (Wind) 
8 2 Renewable (Wind) 
11 2 Renewable (Wind) 
13 2 Renewable (Wind) 

 



Adding Kinetic Energy Constraint

• 𝐾𝐾𝑚𝑚𝑚𝑚𝑅𝑅𝐶𝐶𝑚𝑚𝐾𝐾 𝐸𝐸𝑚𝑚𝑅𝑅𝑅𝑅𝐸𝐸𝐻𝐻 = ∑ 𝐻𝐻𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 ,
• 𝑤𝑤𝑤𝑅𝑅𝑅𝑅𝑅𝑅 𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑑𝑑𝑚𝑚𝑅𝑅𝑚𝑚𝑑𝑑𝐼𝐼𝑎𝑎𝐼𝐼 𝑈𝑈𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶
•
• 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐻𝐻1𝑀𝑀𝑀𝑀𝑀𝑀1 + 𝐻𝐻2𝑀𝑀𝑀𝑀𝑀𝑀2 + 𝐻𝐻5𝑀𝑀𝑀𝑀𝑀𝑀5 + 𝐻𝐻8𝑀𝑀𝑀𝑀𝑀𝑀8 +
𝐻𝐻11𝑀𝑀𝑀𝑀𝑀𝑀11 + 𝐻𝐻13𝑀𝑀𝑀𝑀𝑀𝑀13

• Thus, the following Kinetic Energy constraint is added to the analysis:
• 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝐻𝐻1𝑃𝑃𝐸𝐸𝑅𝑅𝑚𝑚1 − 𝐻𝐻2𝑃𝑃𝐸𝐸𝑅𝑅𝑚𝑚2 − 𝐻𝐻5𝑃𝑃𝐸𝐸𝑅𝑅𝑚𝑚5 − 𝐻𝐻8𝑃𝑃𝐸𝐸𝑅𝑅𝑚𝑚8 −
𝐻𝐻11𝑃𝑃𝐸𝐸𝑅𝑅𝑚𝑚11 − 𝐻𝐻13𝑃𝑃𝐸𝐸𝑅𝑅𝑚𝑚13 ≤ 0



Evaluation of Frequency and Inertia Constant

• Starting with Energy and Real Power,
• 𝐸𝐸 = ½ 𝐽𝐽𝜔𝜔𝑚𝑚2 = ½ 𝐽𝐽(2𝜋𝜋𝑓𝑓𝑚𝑚)2 (13)
•
• 𝑃𝑃 [𝑀𝑀𝑀𝑀] = 𝑙𝑙𝑑𝑑

𝑙𝑙𝑑𝑑
= 𝐽𝐽 ∗ 2𝑓𝑓𝑚𝑚 ∗

𝑙𝑙(2𝜋𝜋𝜋𝜋)
𝑙𝑙𝑑𝑑

(14)
• Using the swing equation,
• Pacc = Pmech − Pelec = (2½J)𝜔𝜔𝑚𝑚

𝑙𝑙𝜔𝜔𝑚𝑚
𝑙𝑙𝑑𝑑

(15)
•
• With,

H = 𝑆𝑆𝑑𝑑𝑙𝑙𝑆𝑆𝑆𝑆𝑙𝑙 𝑑𝑑𝐸𝐸𝑆𝑆𝑆𝑆𝑔𝑔𝑠𝑠 𝑙𝑙𝑑𝑑 𝑠𝑠𝑠𝑠𝐸𝐸𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑙𝑙
𝑀𝑀𝑙𝑙𝑠𝑠𝑠𝑖𝑖𝐸𝐸𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑙𝑙𝑑𝑑𝑖𝑖𝐸𝐸𝑔𝑔

= ½ 𝐽𝐽𝜔𝜔𝑠𝑠
2

𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟



Evaluation of Frequency and Inertia Constant
• so,
• Pacc = 2𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑙𝑙𝑑𝑑𝑖𝑖𝐸𝐸𝑔𝑔

1
𝜔𝜔𝑠𝑠
2 𝜔𝜔𝑚𝑚

𝑙𝑙(𝜔𝜔𝑚𝑚)
𝑙𝑙𝑑𝑑

• 𝑃𝑃𝑙𝑙𝑠𝑠𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑙𝑙𝑑𝑑

= 𝑃𝑃𝑚𝑚𝑆𝑆𝑠𝑠𝑠−𝑃𝑃𝑆𝑆𝑙𝑙𝑆𝑆𝑠𝑠𝑑𝑑
𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

= 2𝐻𝐻
𝜔𝜔𝑠𝑠

𝜔𝜔𝑚𝑚
𝜔𝜔𝑠𝑠

𝑙𝑙𝜔𝜔𝑚𝑚
𝑙𝑙𝑑𝑑

• ∆𝑃𝑃𝑝𝑝𝑝𝑝
2𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠

= 1
𝜔𝜔𝑠𝑠
𝜔𝜔𝑚𝑚𝑝𝑝𝑝𝑝

𝑙𝑙𝜔𝜔𝑚𝑚
𝑙𝑙𝑑𝑑

= 1
2𝜋𝜋𝜋𝜋𝑠𝑠

𝜔𝜔𝑚𝑚𝑝𝑝𝑝𝑝
𝑙𝑙(2𝜋𝜋𝜋𝜋𝑚𝑚)

𝑙𝑙𝑑𝑑

•
• Assume 𝜔𝜔𝑚𝑚𝑝𝑝𝑝𝑝=1,

• ∆𝑃𝑃𝑝𝑝𝑝𝑝
2𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠

= 𝑙𝑙(𝜋𝜋𝑚𝑚/𝜋𝜋𝑠𝑠)
𝑙𝑙𝑑𝑑

• Thus,
• 𝑙𝑙(𝜋𝜋𝑝𝑝𝑝𝑝)

𝑙𝑙𝑑𝑑
= ∆𝑃𝑃𝑝𝑝𝑝𝑝

2𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠



Final Constraint

• Using this final equation with frequency drop constrained to 0.3Hz (or 
0.3/60 pu) in 1-second and Hsys=5 pu-s, the following constraint can 
be added to the cost optimization problem formulation:

•
(22)

• ∆𝑃𝑃𝑠𝑠𝑝𝑝 −
𝑙𝑙(𝜋𝜋𝑝𝑝𝑝𝑝)
𝑙𝑙𝑑𝑑

2𝐻𝐻𝐶𝐶𝐻𝐻𝐶𝐶 ≤ 0 𝐶𝐶𝑅𝑅 ∆𝑃𝑃𝑠𝑠𝑝𝑝–
0.3
60
1

∗ 2 ∗ 5 ≤ 0

• 𝐶𝐶𝑅𝑅 ∆𝑃𝑃𝑠𝑠𝑝𝑝– 0.05 ≤ 0
• THIS IS NO LONGER A CONVEX PROBLEM. THE INTERIOR POINT METHOD GIVES US A

LOCAL MINIMUM AND NOT A TRUE OPTIMIZATION.



Results

• Table 3- Power Generation Results of Minimizing Cost

• Table 5- Power Flow Results of the 30-bus system

Bus No. Pgeneration Cost 

1 1.8540 499.7117 
2 0.4687 120.4739 
5 0.1912 41.9824 
8 0.1 33.3340 
11 0.1 32.5000 
13 0.12 39.6000 
  Total Cost: 767.6021 

 

Bus No. Pgeneration Cost 

1 1.9741 540.9602 
2 0.4687 120.4739 
5 0.1912 41.9824 
8 0.1 33.3340 
11 0.1 32.5000 
13 0.12 39.6000 
  Total Cost: 808.8506 

 



Results

• Table 5- Minimizing Cost with Reserves

• Comparing Tables 3 and 5, it is evident that as reserve requirements 
are added to the system, generation gets reallocated.  Some 
generators lose the opportunity cost of generating MWs and must 
contribute to the reserve requirements. 

Bus No. Pgeneration Reserves Cost of Pgen 

1 1.8117 0.1883 485.4136 
2 0.4859 0.1381 126.3536 
5 0.1961 0.0987 43.6321 
8 0.1204 0 40.3244 
11 0.1000 0 32.5 
13 0.1200 0 39.6 
  Total Cost with Reserves: 

850.2766 
 



Results

• Table 6- Minimizing Cost with Hsys=5 pu-s

• As illustrated by the values in Table 6, the generation shifts to the 
higher inertia units (at Bus 1 and 2). These higher inertia units then 
have less headroom to help meet reserve requirements. 

Bus No. Pgeneration Reserves Cost of Pgen 

1 1.8406 0.1594 495.1791 
2 0.5210 0.1607 138.6838 
5 0.1523 0.1050 29.7367 
8 0.1000 0 33.3340 
11 0.1000 0 32.5000 
13 0.1200 0 39.6 
  Total Cost with Reserves: 

851.8998 
 



Results

• The last constraint we add is the frequency drop constraint.
• The final result of the optimization with the inertia constraints was 

that the system could accommodate a 0.0239pu loss of generation 
and still keep frequency above 59.7Hz or higher during the 1 second.



Conclusions

• The IEEE 30-bus system was analyzed to minimize the cost function 
subject to several constraints. It is good to note that Matlab fmincon
gave the local minimum and not a true optimization. One of these 
constraints was inertia. The system inertia constant was kept to 5pu-s. 

• The result was that the 30-bus system, under the inertia constants 
designated, could keep frequency at 59.7 Hz or higher for generation 
trip of 0.0239 pu. 
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