Multi-year Detailed Nodal, Cloud-based Modeling of Economic and Environmental Impacts of the Integration of Significant Quantities of Mandated On-shore and Off-shore Renewable Resources into the Regional Electric Power Grid

Richard D Tabors and Alexandr Rudkevich JR Hornby, E. Goldis, H. He, X. Li, k. Amoako-Gyan, N. Kumthekar Tabors Caramanis Rudkevich (TCR)

> **FERC Technical Conference** June 27, 2018

The Computational objective...

- The integration of parallelized cloud-based computation with data retrieval, aggregation and communication into familiar spreadsheet format focusing on:
 - Speed and efficiency of the analytics
 - Ability to communicate the results to diverse stakeholders
 - Ability to reproduce and defend the process and the results before multiple state regulatory bodies.

75 Park Plaza Boston, MA 02116

Background to the need under MA 83D and 83C

- Massachusetts legislature passed Chapter 169 of the Acts of 2008, the Global Warming Solutions act (GWSA)
 - Including the 2008 Green Communities Act
 - Amended in 2016 by the Energy Diversity Act
- Objective: by 2020 reduce carbon emissions to 75% of the 1990 level and to 20% of 1990 by 2050
 - Primary foci were the energy (electric) and transportation sectors
 - To 2016 progress was slow
- The 2016 act mandated that the three distribution utilities (Eversource, National Grid and Unitil) acquire 9450 Gigawatt hours of *NEW*, land-based renewable (83D) and up to 1600MW of offshore wind (83C) through two sequential RFPs
- 83D completed in December, 83C in June. Contract negotiations are underway

The Analytic Challenges

- Without seeing any bid the quantitative team was to:
 - Develop a detailed a quantitative protocol for evaluation (a qualitative protocol was also developed)
 - Define both the direct and indirect quantitative metrics to be used to compare and eventually rank the proposals
 - The final ranking would be on the summation of metric values in \$/MWh in 2017 constant dollars
 - Develop the "but for" or Base Case for the New England (and New York) power systems to 2040 with a look ahead to 2050
 - Develop and test the cloud-base project calculation engine
 - Simulate 22 years of hourly nodal prices upon which to calculate and then aggregate the ten metrics to be used for comparison of the bids.

The Quantitative Metrics

Direct

- Revenue earned from the energy market
- The direct cost of the contracted energy to the utilities
- Revenue generated from REC and CEC sold into the market
- The direct cost of REC and CEC to the utilities
- The cost (or benefit) attributable to transmission

Indirect

- Savings from energy price suppression (nodal LMP based)
- Savings from REC/CEC Price Suppression (State / Region)
- The contribution value to GWSA (DOER methodology)
- The positive impact on winter gas related price volatility
- The Impact on the Capacity Market

Base Case Planning Horizon and Look Ahead by Technology and Fuel type

Boston, MA 02116

The Process

- \bullet Simulation modeling of Base Case and each Proposed Project or Portfolio with <code>ENELYTIX</code> $^{\tiny{\textcircled{\tiny{8}}}}$
- Three Modules functioning from <u>a common database</u>
 - Capacity Expansion
 - Energy and Ancillary Services
 - Forward Capacity Market
- Proposals received in RFP 83D
 - 46 proposals were evaluated individual and / or in portfolios
 - Size range from 20MW to 1090MW
 - Capacity factors range from 20% to 100% (major hydro / transmission projects)
- Accounted for intermittency of wind and solar
- Located in all NE states except RI and also in NY

The Size of the Problem

- For the each proposed project
 - Calculation of the complete nodal representation of the NE power grid
 - Hourly for the 22-year evaluation period
 - An additional 3-month scenario assessing the impact of the proposed project on the system economics under conditions of extremely high natural gas prices.

75 Park Plaza Boston, MA 02116

Computation on the Cloud

- To evaluate each proposed project required:
 - committing 601 virtual machines,
 - generating 330 Gigabytes of data per run.
 - Calculating / aggregating the inputs required to then calculate the direct and indirect metrics values
 - Committing 27 virtual machines per annual run
 - Transferring the results to local servers that were used to compile the results into the Direct and Indirect summary workbooks and into the environmental (GWSA) workbook.

From 330 Gigabytes to a single value...

The Computational Bottom Line

- The project demonstrated the ability to integrate parallelized cloudbased computation with data retrieval, aggregation and communication of the results to local servers in a familiar spreadsheet format
- The project demonstrated this could be done
 - Effectively and efficiently
 - The results could be formatted quickly to communicate the results to diverse stakeholders
 - The results could be stored so as to be reproducible and defendable in complex regulatory proceedings.

Richard D Tabors, Ph.D.

President
Tabors Caramanis Rudkevich
75 Park Plaza
Boston MA 02116

617 871 6913 rtabors@tcr-us.com

