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Motivation of why we are revisiting these questions

» Revisiting historical reliability standards that have been around for
many years

= VVariable energy resources increasing the variability and uncertainty on
the system, in a way different than historical needs

= Other new technologies emerging that can either impact the need for
operating reserve or support their provision

* Recent motivation toward maximizing efficiency and least-cost
operations due to electricity market restructuring

" Increased software computational capabilities that can now solve
difficult problems in relatively short times
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Definitions (for the sake of this presentation)

= Net Load: Load minus renewables

* Energy Schedule: A level of energy that a supply resource is directed to provide at some
time point in the future for some duration of time

= Operating Reserves: Active Power Capacity that is held above or below expected average
energy schedules to respond to changing system conditions under operational time frames

= Upward and downward response
» For multitude of reasons:
= Maintain frequency at nominal level (60 Hz in U.S.)
= Reduce Area Control Error (ACE) to zero
= Assist neighboring balancing authority
= Reduce over flow of transmission lines and transformers
= Manage Voltage (usually done with reactive power)
= Reduce Costs
= Avoid infeasibilities/price spikes
= Eftc.
= Reactive Power Reserves: Mostly for voltage control (not discussed here)

» Planning Reserves: Long term capacity to ensure system adequacy (not discussed here)
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Three Central Reserve Needs
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Defining Operating Reserve
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Dynamic Reserve Method Overview

» Method that utilizes a dynamic reserve method that attempts to forecast the
reserve need with some level of confidence

= Exact need: Review historical data and evaluate historical need based on the
three central reserve needs

» Determine explanatory variables that best correlate with need

* Requirement combines all needs and sources to provide a formula to determine
reserve requirements based on one or more look up tables

= Choice of confidence interval allows user flexibility to choose risk tolerance and
economic efficiency objectives of balancing area

* Dynamic Assessment and Determination of Operating Reserve (DynADOR)
Software Tool to compute reserve requirements for balancing areas
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Dynamic Reserve Requirement Methodology
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Scheduling Process for Case Studies

UC: unit commitment
) ED: Economic dispatch

[ Day Ahead UC
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In initial case studies, no units can be committed in the real-time Economic Dispatch

Variability: 5-minute max/min within 60-minute interval
Uncertainty: Forecast error between day-ahead and real-time
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Study Process
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Example Combination of Needs to Determine Requirement
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Test Case Study Results

Static Rgqmt By VER

531.769 M 542.222M 541.474M 539.296M

Total violations
12xMWh 2,148,894 197,027 153,653 103,333

Significant Reliability Improvement at Modest Cost Increase

_ Base case (RT |EPRI50% (RT
Commitments Commitments
596.536M 593.797M

Total violations
12xMWh 114,264 31,239

Simultaneous Reliability Improvement and Cost Reduction

Benefits system dependent based on quantity of variability and uncertainty, scheduling process, decisions that

can be made, and existing reserve method.
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Presenter
Presentation Notes
96% penalty reduction for 1.4% cost increase
73% penalty reduction for 0.5% cost decrease


Case Study on Hawaiian Electric Company
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Hawaiian Electric System Overview

= |[sland system
* Peak load 1150 MW
= Largest contingency 180 MW

= 98 MW utility-wind, 10 MW utility-PV, 290 MW distributed PV (at time of study)
— Study impacts of 287MW utility-scale and 564 MW distributed PV

= Mostly low sulfur fuel oil, some diesel, 1 coal plant, small biodiesel and municipal
waste

— LSFO ~$14/MMbtu when studied
= 9 large steam units that are must run (56% of conventional capacity)
= 3 combustion turbines cycled based on load

* Commitment of CTs performed by operators, dispatch performed by AGC every 20
seconds
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Scheduling Process — Unique Aspects of Hawaiian Electric Company
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Study Objective and Metrics

= Study the following impacts on the Oahu System
— Impacts of higher levels of VER
— Allowance of cycling of mid-merit plants
— New dynamic operating reserve requirement methods
* Production cost: total fuel and operating costs

* HECO Compliance Metrics: % of time the system frequency deviation
IS less than +/- 50 mHz WARNING

= Sigma ACE: standard deviation of ACE for study period SSREHERSON

* Head Room Risk: Percent of time that the system is short of sufficient
head room to accommodate the loss of largest unit

= VER Curtailment

= Utilize simulation tool to evaluate impacts while representing the unique
operating structure of HE including UC and lambda-based AGC
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Reserve Requirements Comparison

Traditional | Exact Traditional: 18% of utility VER during
All methods include 180 MW of
Average : 4. : 4 : contingency reserve in addition

 EPRI NN: Dynamic reserve method

based on NN percentile confidence
Standard 63.2 30.3 33.8 36.2 41.3

Deviation

Maximum 153.1 175.3 133.0 140.3 165.0
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Hawaiian Electric Company Dynamic Reserve Study Results

Head Head

HECO HECO

Adjusted Room Adjusted Room

Reserve Compliance Reserve

(%)
94.3

Compliance
(%)

96.5

Cost ($M) Deficiency
(%)

0.0

Cost ($M) Deficiency
(%)

0.0

Existing Must Run

11.913 4.95 Existing MustRun 14,291 3.81

No Reserve 11.081 4.77 94.2 9.6 No Reserve 13.967 3.62 97.0 2.1
Spring A Traditional Method 11.374 4.93 94.2 0.0 Traditional Method 14.095 3.60 97.0 0.0
EPRI 90% 11.281 4.87 94.3 0.0 EPRI 90% 14.083 3.61 97.0 0.0
EPRI 75% 11.240 4.81 94.5 0.6 EPRI 75% 14.058 3.61 97.0 0.0
Existing MustRun 13,167 4.47 95.1 0.0 Existing Must Run ~ 14.040 3.07 97.9 0.0
No Reserve 12.620 4.21 96.0 55 No Reserve 13.667 2.87 98.1 3.9
Traditional Method 12.834 4.25 95.8 0.8 Traditional Method 13.763 2.91 98.1 1.3
EPRI 100% 12.800 4.23 95.9 0.0 EPRI 90% 13.758 2.85 98.1 0.0
EPRI 95% 12.781 4.23 95.9 0.0 EPRI 75% 13.748 2.85 98.2 0.0
Existing MustRun ~ 13.578 5.18 93.6 0.0 Existing MustRun ~ 13.073 3.21 97.7 0.1
No Reserve 13.125 512 94.2 3.2 No Reserve 12.506 3.02 98.1 4.9
SN @ W Traditional Method 13.287 5.10 94.0 0.1 WING @ W Traditional Method 12.658 3.09 98.0 12.0 |
EPRI 90% 13.241  5.07 94.1 0.0 EPRI 90% 12.613  3.03 98.1 [0.0 |
EPRI 75% 13.211 5.09 94.1 0.0 EPRI 75% 12.603 3.06 98.1 0.1
Existing MustRun 13,910 3.89 96.4 0.0 Existing MustRun 12,188 5.86 93.1 0.0
No Reserve 13.559 3.65 97.0 3.4 No Reserve 11.358 5.66 93.3 11.0
S luE@=] Traditional Method 13.683 3.68 97.0 0.6 WINE@=M Traditional Method 11.570 5.97 93.0 0.8

EPRI 90% 13.655 3.64 97.0 0.0 EPRI 90% 11.527 5.76 93.1 0.0
EPRI 75% 13.652 3.63 97.0 0.0 EPRI 75% 11.515 5.69 93.5 0.5

Dynamic Reserve with 90% confidence interval allows for cycling of units with constant or improvement to reliability at $21M savings
Lower confidence interval provides greater reliability than existing methods at greater cost savings
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HE Study Recommendations and Conclusions

» Cycling of mid-merit resources for balancing can provide substantial economic
benefits

— However, other reasons for must-run status must be considered

= Combined use of cycling and advanced dynamic reserve requirements can provide
economic and reliability benefits

— Estimated $21-$24M annual savings (4%) in addition to improved reliability
— Can allow shift to cycling of units without degradation to reliability

= VER Curtailment during high ACE required on future system

= Need to evaluate frequency responsiveness as part of reserve providers (MW/Hz and
MW requirements)

= Utilize new data including probabilistic VER forecasts for reserve requirement
forecast

— Evaluating in new
= [nclude ramp constraints in economic AGC process
= With cycling, stagger start-up and shut-down process
» Stepped reserve demand curve for different reserve requirement confidence intervals
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Summary and Next Steps

= Simultaneous reliability and economic efficiency benefits are rare to come by — makes stakeholder
approval easier

= EPRI tool, Dynamic Assessment and Determination of Operating Reserve (DynADOR), takes in
historical information and calculates operating reserve requirements based on user input and
scheduling process parameters

— Works for regulation reserve and load following / flexible ramping (i.e., continuous variability and uncertainty)
— Currently not applicable to contingency reserve
* Phase |l of project to implement methods in operations and include parallel operation

= Conduct studies with numerous balancing areas and ISOs to assess how much reliability and/or
economic benefits may be present from moving to dynamic reserve

— Not every system is the same — benefits depend on various factors

* Project with Department of Energy to study use of probabilistic solar forecasts in scheduling
applications

= Research underway on enhancing the forecasting piece of the dynamic reserve method through
more advanced methods (e.g., machine learning, multi-variate and non-linear relationships)

= Research to continue to evaluate formulation improvements to SCUC and SCED to achieve
benefits in addition to dynamic reserve requirements
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