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A Word From Our Sponsors... ) .

= DOE Grid Modernization Laboratory Consortium (GMLC)
= Project 1.4.26 — Multi-Scale Production Cost Modeling

= Bonneville Power Administration (BPA)

= Funded work on high-accuracy probabilistic wind forecasting
= Provide real-world data sets, publicly available

= Department of Energy’s ARPA-E office

= Scalable stochastic unit commitment project




High-Level Talk Goals ) .

= Cover recent developments in stochastic UC solvers

= Convince you that the oft-repeated statement “stochastic UC
is prohibitively computationally difficult” is unfounded

= Quickly highlight some work on developing a range of
stochastic UC benchmarks




All of Our Research Is
Built on and Enabled by...
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Mathematical Programming Computation papers
Pyomo: Modeling and Solving Mathematical Programs in Python (Vol. 3, No. 3, 2011)
PySP: Modeling and Solving Stochastic Programs in Python (Vol. 4, No. 2, 2012)
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Refresher: The General Structure of a @&
Stochastic Unit Commitment
Optimization Model

Objective: Minimize expected cost

ettt Lttt First stage variables:
.':’.:Z e Unit On/ Off

..... %

vt ] Nature resolves uncertainty
RIRRIT A « Load

Lo « Renewables output

* Forced outages

¥

Second stage variables
(per time period):

* Generation levels

* Power flows

Scenario 1 Scenario 2 ... ScenarioN °* Voltage angles

Renewables are not modeled as must-take, allowing for curtailment without penalty




Scenario-Based Decomposition via [,
Progressive Hedging (PH)

<«——— Standard MIP Solves

Key parameter: p

N Wx :p(x_;)

|(x=X)|< &?

Global Convergence
‘ Criterion Achieved?

min f (X)+ W, X+ p/2]| X=X |

Vvx =WX+,O(X—X_)




Progressive Hedging: Some )

Lahoratories

Algorithmic Issues and their Resolution

= We are dealing with mixed-integer programs

= So we have to deal with the possibility of cycling and other
manifestations of non-convergence

= See: Progressive Hedging Innovations for a Class of Stochastic Mixed-
Integer Resource Allocation Problems, J.P. Watson and D.L. Woodruff,
Computational Management Science, Vol. 8, No. 4, 2011

" Good values for the p parameter are critical

= Poor or ad-hoc values of p can lead to atrocious performance

= The good news in unit commitment
= We have a lot of information concerning the cost of using a generator

= Cost-proportional rho is a known, effective strategy in Progressive Hedging

= Also see Computational Management Science paper indicated above




A Novel Matching Formulation for g
Startup Cost in Unit Commitment

= Thermal generators have time-dependent startup costs,
which are increasing the length of the generator’s off-time.

= Need more energy to start cold thermal units than warm ones

= Can be modelled by appending additional variables and
constraints to the MILP formulation for a thermal generator

= Contributions:

= We introduce a new formulation for time-dependent startup costs.

= We place the existing formulations into a formal dominance hierarchy
based on their relative tightness.

= We compare the effectiveness of the various formulations on large-
scale unit commitment instances




A Novel Matching Formulation for g
Startup Cost in Unit Commitment

Idea: Introduce new variables x(t,t") to match shutdowns w(t)
with with startups v(t").

t—TD

Z x(t',t) < v(t)

t'=t-TC+1

t+7TC—-1

Z x(t,t") < w(t)

t'=t+TD

Startup costs are then calculated by putting appropriate
coefficients on v(t) and x(t,t") in the objective function.
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Comparing UC Formulations ) 5

= EF (Extended Formulation): based on shortest-path polytope
(Pochet 2006)

= Match: our contribution

= STI (Startup Type Indicator): from Simoglou et al. (2010) and
Morales-Espana et al. (2013)

= 3-bin: introduced to ease proofs, needs fewer variables than
STI

= 1-bin*: strengthened 1bin from Silbernagl et al. (2015)
= 1-bin: from Carrion and Arroyo (2006)




Comparing Formulations ) .

* T s the number of time periods

EF 0(T?) 0(T) = S isthe number of startup types
Match O((TC — DT) - T) o(T) = TC is the time after which the
ST 0(S-T) 0(s-T) generator goes cold
3-bin 0(T) 0(s - T) = DT is the generator’s minimum
1-bin* 0(T) 0 -T) downtime
1-hin 0(T) 0(S-T)

« Match needs more variables than the other formulations
besides EF.

« However, the strength of the formulations from strongest to
weakest is EF -> Match -> STI -> 3-bin -> 1-bin* -> 1bin.




Computational Results: CAISO

Instances

o Extra variables in
Match do not increase
its difficulty

 Match closes 50-90%

of the integrality gap
relative to STI

e QOverall 18% reduction
In solve time on
average over STI
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Instance 3-bin 1-bin* 1-bin
2014-09-01 0% 53.55 |(0.028%) | (0.041%)
2014-12-01 0% 65.81 [(0.073%) | (0.068%)
2015-03-01 0% 16.46 |(0.042%) | (0.053%)
2015-06-01 0% 2474 |(0.017%) | (0.020%)
Scenario400 0% 173.37 |(0.403%) | (0.383%)
2014-09-01 1% 31.83 [(0.055%) | (0.045%)
2014-12-01 1% 85.78 [(0.072%) | (0.069%)
2015-03-01 1% 67.20 [(0.079%) | (0.090%)
2015-06-01 1% 70.83 |(0.020%) | (0.028%)
Scenario400 1% 182.19 |(0.376%) | (0.446%)
2014-09-01 3% 87.48 |(0.043%) | (0.036%)
2014-12-01 3% 93.39 [(0.083%) | (0.087%)
2015-03-01 3% 99.57 [(0.112%) | (0.110%)
2015-06-01 3% 83.26 |(0.024%) | (0.022%)
Scenario400 3% 356.10 |(0.495%) | (0.538%)
2014-09-01 5% 119.49 [(0.037%) |(0.037%)
2014-12-01 5% 113.69 [(0.104%) | (0.082%)
2015-03-01 5% 9495 [(0.115%) | (0.105%)
2015-06-01 5% 151.47 {(0.031%) |(0.031%)
Scenario400 5% (0.014%) | (0.514%) | (0.570%)

Geometric Mean: >91.43 >600 >600




Computational Results: FERC ) &,
I N Sta Nces (a) 2% Wind Penetration

Instance EF Matchfl STI 3bin 1bin* 1bin
20150101 51191 | 111.34] 193.07 | 241.63 | (0.017%) | (0.046%)
2015-02-01| 586.95 || 85.12 [ 314.07|463.66 | (0.143%) ] (0.172%)
. . 2015-03-01| 8073 | 152.24) 177.44|245.77] 649.54 | 596.24
 Low wind (2%) Instances 2015-04-01 | (0.012%)f 190.62] 321.6 | 177.27] 67545 | 660.92
0 ) ] 2015-05-01| 512.55 | 177.51| 19129 | 186.68| 334.17 | 41603
 30% mean reduction in 20150601 619.8 | 142.57)139.16|211.92 | 406.68 | 575.42
) 3015-07-01 | (0.017%)§ 411.00] 491.22 | 260.41 | (0.014%) | 901.87
solve time over STI 2015-08-01| 808.34 || 113.13]350.52|449.67] (0.11%) | (0.165%)
N £th 2015-09-01 (0.016%)!313.79 28431 8405 [(0.101%) [ (0.113%)
o 2015-10:01 | 605.11 | 132.05| 113.69 | 133.48 | 582.63 | 582.58
But Only close 8% of the 2015-11-02| 573.13 || 109.88]200.83 | 209.22 | (0.073%) | (0.136%)
2015-12:01 | (0.013%)| 116.25| 114.15 | 242.18 | (0.055%) | (0.105%)
root gap over STlon Geometric Mean: | >701.7 | 153.60| 218.36 | 266.53 | >711.7 | >739.1
—
average

(b) 30% Wind Penetration

e High wind (30%) instances

. . . Instance EF Match STI 3bin 1bin* Ibin
e 459% reduction in solve time 2015-01-01 | 712.53 | 127.22 | (0.902%) | (1.334%) | (4.083%) | (3.808%)
2015-02-01 | 612.38 || 114.78 |(0.043%) | (0.158%) | (0.952%) | (0.959%)
2015-03-01| 895.97 | 647.78 | 480.77 | 49635 |(0.386%) | (0.460%)
over STI 2015-04-01 | (0.024%)} 140.82 | 23623 | 42571 |(0.276%) | (1.054%)

0 2015-05-01 | (0.016%)f 104.62 | 119.06 | 11024 | 312.33 | 337.55
» Close 34% of the root gap 2015-06-01| 698.12 222.54| 141.18 | 110.06 |(0.408%)](0.101%)
2015-07-01 | (0.015%)} 126.98 | 346.18 | 230.15 |(0.222%) | (0.105%)
over STI on average 2015-08-01 | (0.019%)} 395.87 | 379.42 | 227.92 |(0.768%) | (0.870%)
i i 2015-09-01 | (0.012%)} 245.73 | 780.9 | (0.035%) | (0.254%) | (0.256%)

e Most Match variants still 2015-10-01 | (0.036%)} 439.03 | 352.54 | 533.72 | 617.14 | 607.19
| g 2015-11:02| 789.73 | 182.40| 618.73 | 782.18 |(0.803%) | (1.065%)
2015-12-01 | 674.84 || 312.67 36135 | 421.08 |(0.035%) | (0.035%)

solve at root noae Geometric Mean:| >808.1 | 214.70 | >390.5 | >401.1 | >799.3 | >803.0
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Toward Scalable Stochastic Unit Commitment

Part 1: Load Scenario Generation

Yonghan Feng - Ignacio Rios - Sarah M.
Ryan - Kai Spiirkel - Jean-Paul Watson -
Roger J-B Wets - David L. Woodruff

Revised: November 15, 2014

Abstract Unit commitment decisions made in the day-ahead market and during
subsequent reliability assessments are critically based on forecasts of load. Tra-
ditional, deterministic unit commitment is based on point or expectation-based
load forecasts. In contrast, stochastic unit commitment relies on multiple load sce-
narios, with associated probabilities, that in aggregate capture the range of likely
load time-series. The shift from point-based to scenario-based forecasting necessi-
tates a shift in forecasting technologies, to provide accurate inputs to stochastic
unit commitment. In this paper, we discuss a novel scenario generation method-
ology for load forecasting in stochastic unit commitment, with application to real
data associated with the Independent System Operator for New England (ISO-
NE). The accuracy of the expected scenario generated using our methodology is
consistent with that of point forecasting methods. The resulting sets of realistic
scenarios serve as input to rigorously test the scalability of stochastic unit com-
mitment solvers, as described in the companion paper. The scenarios generated

In Energy Systems (2015)
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Toward Scalable Stochastic Unit Commitment

Part 2: Solver Configuration and Performance Assessment

Kwok Cheung - Dinakar Gade - César
Silva-Monroy - Sarah M. Ryan - Jean-Paul
Watson - Roger J.-B. Wets - David L.
Woodruff

Received: April 30, 2014

Abstract In this second portion of a two-part analysis of a scalable computa-
tional approach to stochastic unit commitment, we focus on solving stochastic
mixed-integer programs in tractable run-times. Our solution technique is based on
Rockafellar and Wets’ progressive hedging algorithm, a scenario-based decomposi-
tion strategy for solving stochastic programs. To achieve high-quality solutions in
tractable run-times, we describe critical, novel customizations of the progressive
hedging algorithm for stochastic unit commitment. Using a variant of the WECC-
240 test case with 85 thermal generation units, we demonstrate the ability of our
approach to solve realistic, moderate-scale stochastic unit commitment problems
with reasonable numbers of scenarios in no more than 15 minutes of wall clock
time on commodity compute platforms. Further, we demonstrate that the result-
ing solutions are high-quality, with costs typically within 1-2.5% of optimal. For

In Energy Systems (2015)



Stochastic UC Results: A Refresh

Table 10 Solve time (in seconds) and solution quality statistics for PH executing on the

WECC-240-r1 instance, with a = 0.5, p = 3, and the MTR deterministic UC model.

# Scenarios  Convergence Metric ~ Obj. Value PHL.B.  # Vars Fx. Time
64-Core Workstation Results

3 0.0 (in 36 iters) 64141.771  64109.021 4080 237

5 0 0 (in 23 iters) 62628.532  62499.212 4080 161

10 0 (in 26 iters) 61384.016  61327.734 4080 215

25 0 0 (in 41 iters) 60927.903  60850.717 4080 366

50 0.0 (in 11 iters) 60617.311  60470.956 4044 318

Sandia
’I1 National
Laboratories

Results
generated
circa 2013
(published
2015)

New UC model, fewer PH tweaks, and new
persistent solver interfaces in PySP

Convergence Obj. Value | PHL.B. Time
Scenarlos Metric

0.0 (in 5 iters) 64156.14 64107.06 41 s.
Results
5 0.0011 (in 20 iters) 62669.10 62612.79 127 s. generated
100 0.0 (in 8 iters) 61386.90  61349.97 105 s. March
25 0.0 (in 11 iters) 60933.85  60883.27 167 s. 2018
50 0.0 (in 9 iters) 60618.77 60577.50 207 s.




Epi-Spline-Based Scenario Creation

= For asubset of hours in day (i.e., hours 1, 12, 24), calculate empirical
forecast error CDF from relevant* historical forecast/actual pairs

= Correlations in forecast error drop off quickly with time, allowing
for independent calculations

= Divide distribution at cut points, and calculate the weighted average of
the distribution between each cut point pair

= Apply error value to next-day forecast to obtain scenario value

power power power
4 4 4
--------------------- UB tmemmmnasansnennnanaaad [T Ipeasccest siiianccaea | VB
s ®  Skeleton points
T EARAEEEaaE : CDF of errors
: 1 i applied to forecast
| T B [ — Quantiles
) ¢1, ¢z Cutpoints
UB  Upper Bound
p
L
- —— 0 - 0 e 0
0 1 1
Cy C3 Co Cyp Cy C3 Co (&3] Cy C3 Co Cy
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RESEARCH ARTICLE

Generating Short-Term Probabilistic Wind Power Scenarios
via Non-Parametric Forecast Error Density Estimators

Andrea Staid!, Jean-Paul Watson', Roger J.-B. Wets?, and David L. Woodruff?

! Sandia National Laboratories, Albuguerque, New Mexico, USA
2 University of California Davis, Davis, California, USA

ABSTRACT

Forecasts of available wind power are critical in key electric power systems operations planning problems, including
economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost-
effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach
to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of
wind power production, with associated probability. We present and analyze a novel method for generating probabilistic
wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed
wind power time series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions,
allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then

describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to

—ll Ll e el it i mmde e = B 4 § SRR S RS SR LSy R SRR RIS TR S IR L § PR B S [ S,

In Wind Energy (2017)




Probabilistic (Bulk) Solar Scenarios
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Constructing Probabilistic Scenarios for Wide-Area
Solar Power Generation

David L. Woodruff
Graduate School of Management, University of California, Davis, CA 95616-8609, USA
Julio Deride, Andrea Staid, Jean-Paul Watson

Discrete Math and Optimization Department, Sandia National Laboratories, Albuquerque,
NM 87185, USA

Gerrit Slevogt
Department of Mathematics, University of Duisburg-Fssen, Germany

César Silva-Monroy
Demand FEnergy, Liberty Lake, WA 99019, USA

Abstract

Optimizing thermal generation commitments and dispatch in the presence of
high penetrations of renewable resources such as solar energy requires a charac-
terization of their stochastic properties. In this paper, we describe novel meth-
ods designed to create day-ahead, wide-area probabilistic solar power scenarios
based only on historical forecasts and associated observations of solar power
production. Scenarios are created by segmentation of historic data, fitting non-
parametric error distributions using epi-splines, and then computing specific
quantiles from these distributions. Additionally, we address the challenge of
establishing an upper bound on solar power output. Owur specific application
driver is for use in stochastic variants of core power systems operations optimiza-

Under review (revision) with Solar Energy



High-Quality Scenarios Yields
Very Difficult Stochastic UCs

= There is a remarkably and unexpectedly strong correlation
between the nature of probabilistic scenarios for renewables
and difficulty of solution via decomposition (PH) algorithms
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Stochastic Unit Commitment Performance
Considering Monte Carlo Wind Power Scenarios

Benjamin Rachunok
Purdue University, West Lafayette IN

Andrea Staid and Jean-Paul Watson
Sandia National Laboratories, Albuquerque, NM

Abstract—Stochastic versions of the unit commitment problem
have been advocated for addressing the uncertainty presented by
high levels of wind power penetration. However, little work has
been done to study trade-offs between computational complexity
and the quality of solutions obtained as the ber of probabilis-
tic scenarios is varied. Here, we describe extensive experiments
using real publicly available wind power data from the Bonneville

David L. Woodruff and Dominic Yang
University of California Davis, Davis, CA

While researchers have devoted significant effort to developing
scalable approaches to stochastic UC, relatively little effort
has been devoted to studies that examine the performance of
stochastic UC in the context of power system simulations, of
which stochastic UC is only one component. In particular,
the research literature lacks studies to provide insights into

Power Administration. Solution quality is measured by re- the following question of practical importance: “How many

onasting dav_ahaad liahilitvy nnit t and roal_timma

To appear in Probabilistic Methods Applied to Power Systems (PMAPS) Conference -
2018
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On Diversity of Renewables
Scenarios and Problem Difficulty

2013-05-11 Source 2013-05-11 Source 2013-05-11 Source
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Figure 1: Probabilistic BPA wind power scenarios for May 11, 2013, considering 10, 50, and 100 equi-probable realizations.

Iteration counts and solution times (wall clock) by PH, considering WECC-240++ generator fleet
(a) 7 iterations — ~120 seconds

(b) 100 iterations (limit) — ~600 seconds (!)

(c) 200 iterations (limit) — ~1400 seconds (!!!)


Presenter
Presentation Notes
It’s the low-wind scenarios that were causing trouble.
Hypothesis: Weights want more generation to go offline, “exposing” the non-convexity induced by the demand balance constraint.
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A Solution: Cross-Scenario Feasibility
Cuts

= |dea: Enforce feasibility in the first stage (the commitments) to help ensure there is
sufficient generation online to meet the “worst case” net load in each time period

E (P9 - u)) = max{D§ + R{ — WS}
SES
geG
= This brings more generation online in scenarios with low net-load

= Asimilaridea works to help ensure there is no over-generation in any scenario

g . g < : S
2(2 ut)_rpelg{Dt}

gea
= This prevents too many generators from coming online in scenarios with high net-load

= Critical observation
= These cuts can be computed in parallel
= And prior to execution of progressive hedging
= Bonus: These cuts are simple and “obvious”


Presenter
Presentation Notes
Equation 1: \overline{P}^g is the max power output for each generator, u^g_t is the (first-stage) commitment variable for generator g at time t, G is the set of generators. D^s_t, R^s_t, and W^s_t, are the demand, reserve requirement, and wind power available at time t in scenario s. Therefore the right-hand-side is the *most* the thermal generators could have to cover in time period t, and therefore helps prevent *under* generation in any time period.

Equation 2: \underline{P}^g is the minimum power output for each generator (and all others are same). Notice this helps prevent *over* generation in any time period, and assumes infinite curtailment of the wind (but doesn’t have to, could be reformulated with any level of wind curtailment that’s acceptable).

Other notes: Equation 1 can be made better by including the start-up/shut-down ramping trajectories for each generator (which is implemented as an option). Both equations in practice are formulated with slack and penalties. Of course, *neither* equation guarantees feasibility in the presence of ramping constraints, but does for a simple generator. Both are also easy certificates of infeasibility for the overall stochastic program if some scenario can’t satisfy either inequality in all time periods.


The Impact of Cross-Scenario Cuts (1)

UL L U LU LAUUUS YL ABUAES AT LS UL
Results collection time=5.87 seconds
PH complete

PanmL paiuyLnl LEiia—w L LuLoas

Convergence history:
Converger=Normalized term diff

Iteration Metric Value
=] @.2288
1 8.e862
2 @.8615
3 2.8371
&4 8.831s6
5 @.8359
& B.a272
7 e.e291
8 @.e213
@ 2.8299
ie @.e261
11 @.e287
i1z B.8249
13 @.e183
14 @.e232
15 B.8143
16 @.e153
17 9.9152
18 a.a1a9
19 2.e894
2e @.eas@
B 21 @.8048
22 @.e848
23 @.ea51
24 B.8852
25 2.8049
26 @.e81s8
27 B.ea24
28 @.eea3s
29 @.ea2e

Final number of discrete variables fixed=4855 (total=4@88@)
Final number of continuous variables fixed=8 (total=@)

Computing objective inner bound at xhat solution
Deactivate PH objective proximal terms time=8.88 seconds
Deactivate PH ocbjective weight terms time=8.80 seconds
Fixed variable synchronization time=9.@@ seconds

Time gueueing subproblems=8.88 seconds
Result load time statistics — Min: 8.83 Avg:
Time waiting for subproblems=4.72 seconds
Sub-problem solve time statistics - Min:
Sub-problem pyomo solve time statistics — Min:
Aggregate sub-problem solve time=4.72 seconds
Results collection time=5.43 seconds

Fixed vari = i ime=8.08 scconds

@.83 Max: @.83 StdDev: @.8¢
©.23 Avg: ©.34 Max: 8.48 StdDe-

1.56 Avg: 1.89 Max: 2.69

"Standard” progressive
hedging (350 seconds)
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External function invocation request transmission time=9.8@ seconds
PH complete

Convergence history:
Converger=Normalized term diff
Iteration Metric Value
B.4633
8.8512
8.8289
8.8285
8.0885
8.0062
8.0@82
8.0080

R S R )

Final number of discrete variables fixed=4829 (total=4888)
Final number of continuous variables fixed=@ (total=e)

Computing objective inner bound at xhat selution

Deactivate PH objective proximal terms time=8.8@ seconds

Deactivate PH objective weight terms time=8.88 seconds

Fixed variable synchronization time=8.80 seconds

Time gueueing subproblems=8.8@ seconds

Result load time statistics - Min: 8.83 Avg: ©.83 Max: 8.83 StdDev: 8.88 (seco
Time waiting for subproblems=4.88 seconds

Sub-problem solve time statistics - Min: ©.24 Avg: 8.32 Max: 8.46 StdDev: @.86
Sub-problem pyomo solve time statistics - Min: 1.5%9 Avg: 1.93 Max: 2.73 StdDev
Agoregate sub-problem solve time=4,81 seconds

Results collection time=5.71 seconds

Fixed i i i ime=0.88 seconds

Progressive hedging with
cross-scenario (80 seconds)
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The Impact of Cross-Scenario Cuts (2)

= Running on WECC-240++ scenarios for a simulated month (May)
with high renewables penetration

= 50 and 100 scenarios per instance

= Generally observe wall clock reductions of 80%

= |n all but one case the run time did not exceed 210 seconds

= |n that one exception case, the reduction in wall clock time was only 20%

= Summary

= We can address very difficult stochastic UC instances efficiently

= But there are a few outliers that remain very difficult to solve
= More research!




The RTS-GMLC Test Case ) S,

 Arefresh of the IEEE RTS case

o github.com/GridMod/RTS-GMLC

Installed MW by Region
» » o

Not intended to represent existing infrastructure
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Toward Full-Scale Public UC Test Sets

= 365 deterministic and stochastic UC instances for RTS-GMLC

= Developed using NREL wind and solar data sets
= Publicly released once paper on deterministic RTS-GMLC is submitted
= Contact me if you're interested for a preview case or three

= Larger instances are "available” — or at least have been
constructed and analyzed
= Derived from NREL’s Eastern Renewable Generation Integration Study

= Not releasable due to CEll (Critical Infrastructure) issues
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Conclusions

= Due to recent modeling, algorithmic, and implementation

enhancements...

= .. we can actually solve at least modestly sized stochastic UC instances
in operationally relevant time scales

= .. and with realistic probabilistic scenarios as input

= The availability of difficult, realistic stochastic UC instances is

what drove this advance

= We are moving to making such stochastic UC instances available to
the general research community




Questions? )

= Contact:

= Ben Knueven, bknueve@sandia.gov
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