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A Word From Our Sponsors…

 DOE Grid Modernization Laboratory Consortium (GMLC)
 Project 1.4.26 – Multi-Scale Production Cost Modeling

 Bonneville Power Administration (BPA)
 Funded work on high-accuracy probabilistic wind forecasting 
 Provide real-world data sets, publicly available

 Department of Energy’s ARPA-E office
 Scalable stochastic unit commitment project



High-Level Talk Goals

 Cover recent developments in stochastic UC solvers

 Convince you that the oft-repeated statement “stochastic UC 
is prohibitively computationally difficult” is unfounded

 Quickly highlight some work on developing a range of 
stochastic UC benchmarks



All of Our Research is 
Built on and Enabled by…

 Project homepage
 www.pyomo.org

 “The Book”

 Mathematical Programming Computation papers
 Pyomo: Modeling and Solving Mathematical Programs in Python (Vol. 3, No. 3, 2011)
 PySP: Modeling and Solving Stochastic Programs in Python (Vol. 4, No. 2, 2012)



Refresher: The General Structure of a 
Stochastic Unit Commitment 
Optimization Model
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First stage variables:
• Unit On / Off  

Second stage variables 
(per time period):
• Generation levels 
• Power flows
• Voltage angles
• … 

Nature resolves uncertainty
• Load
• Renewables output
• Forced outages 

p2
p1 pN…

Objective: Minimize expected cost

Renewables are not modeled as must-take, allowing for curtailment without penalty
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PH Iteration 0:
Solve Individual 
Scenario MIPs

Initialize Ws

Update Ws

Fix Variables That 
Have Converged

PH Iteration i:
Solve Weighted  
Scenario MIPs

Global Convergence 
Criterion Achieved?

“Done”

Standard MIP Solves

Key parameter: ρ
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Scenario-Based Decomposition via 
Progressive Hedging (PH)



Progressive Hedging: Some 
Algorithmic Issues and their Resolution
 We are dealing with mixed-integer programs

 So we have to deal with the possibility of cycling and other 
manifestations of non-convergence

 See: Progressive Hedging Innovations for a Class of Stochastic Mixed-
Integer Resource Allocation Problems, J.P. Watson and D.L. Woodruff, 
Computational Management Science, Vol. 8, No. 4, 2011

 Good values for the ρ parameter are critical
 Poor or ad-hoc values of ρ can lead to atrocious performance
 The good news in unit commitment

 We have a lot of information concerning the cost of using a generator
 Cost-proportional rho is a known, effective strategy in Progressive Hedging

 Also see Computational Management Science paper indicated above



A Novel Matching Formulation for 
Startup Cost in Unit Commitment
 Thermal generators have time-dependent startup costs, 

which are increasing the length of the generator’s off-time.
 Need more energy to start cold thermal units than warm ones

 Can be modelled by appending additional variables and 
constraints to the MILP formulation for a thermal generator

 Contributions:
 We introduce a new formulation for time-dependent startup costs.
 We place the existing formulations into a formal dominance hierarchy 

based on their relative tightness. 
 We compare the effectiveness of the various formulations on large-

scale unit commitment instances



A Novel Matching Formulation for 
Startup Cost in Unit Commitment
Idea: Introduce new variables 𝑥𝑥(𝑡𝑡, 𝑡𝑡′) to match shutdowns 𝑤𝑤(𝑡𝑡)
with with startups 𝑣𝑣(𝑡𝑡𝑡).

�
𝑡𝑡′=𝑡𝑡−𝑇𝑇𝑇𝑇+1

𝑡𝑡−𝑇𝑇𝑇𝑇

𝑥𝑥 𝑡𝑡′, 𝑡𝑡 ≤ 𝑣𝑣(𝑡𝑡)

�
𝑡𝑡′=𝑡𝑡+𝑇𝑇𝑇𝑇

𝑡𝑡+𝑇𝑇𝑇𝑇−1

𝑥𝑥 𝑡𝑡, 𝑡𝑡′ ≤ 𝑤𝑤 𝑡𝑡

Startup costs are then calculated by putting appropriate 
coefficients on 𝑣𝑣(𝑡𝑡) and 𝑥𝑥(𝑡𝑡, 𝑡𝑡′) in the objective function.
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Comparing UC Formulations

 EF (Extended Formulation): based on shortest-path polytope 
(Pochet 2006)

 Match: our contribution
 STI (Startup Type Indicator): from Simoglou et al. (2010) and 

Morales-España et al. (2013)
 3-bin: introduced to ease proofs, needs fewer variables than 

STI
 1-bin*: strengthened 1bin from Silbernagl et al. (2015)
 1-bin: from Carrion and Arroyo (2006)



Comparing Formulations
Formulation # variables # constraints

EF 𝑂𝑂(𝑇𝑇2) 𝑂𝑂(𝑇𝑇)
Match 𝑂𝑂( 𝑇𝑇𝑇𝑇 − 𝐷𝐷𝐷𝐷 ⋅ 𝑇𝑇) 𝑂𝑂(𝑇𝑇)

STI 𝑂𝑂(𝑆𝑆 ⋅ 𝑇𝑇) 𝑂𝑂(𝑆𝑆 ⋅ 𝑇𝑇)
3-bin 𝑂𝑂(𝑇𝑇) 𝑂𝑂(𝑆𝑆 ⋅ 𝑇𝑇)

1-bin* 𝑂𝑂(𝑇𝑇) 𝑂𝑂(𝑆𝑆 ⋅ 𝑇𝑇)
1-bin 𝑂𝑂(𝑇𝑇) 𝑂𝑂(𝑆𝑆 ⋅ 𝑇𝑇)

 𝑇𝑇 is the number of time periods
 𝑆𝑆 is the number of startup types
 𝑇𝑇𝑇𝑇 is the time after which the 

generator goes cold
 𝐷𝐷𝐷𝐷 is the generator’s minimum 

downtime

• Match needs more variables than the other formulations 
besides EF.

• However, the strength of the formulations from strongest to 
weakest is EF -> Match -> STI -> 3-bin -> 1-bin* -> 1bin.



Computational Results: CAISO 
Instances

• Extra variables in 
Match do not increase 
its difficulty

• Match closes 50-90% 
of the integrality gap 
relative to STI

• Overall 18% reduction 
in solve time on 
average over STI



Computational Results: FERC 
Instances
• Low wind (2%) instances

• 30% mean reduction in 
solve time over STI

• But only close 8% of the 
root gap over STI on 
average

• High wind (30%) instances
• 45% reduction in solve time 

over STI
• Close 34% of the root gap 

over STI on average
• Most Match variants still 

solve at root node



In Energy Systems (2015)



Probabilistic Load Scenarios

If the historical data 
indicates no variability, 
then the scenarios will 
reflect that consistency

Captures variability in 
load when present –
but predictions are not 
perfect!



In Energy Systems (2015)



Stochastic UC Results: A Refresh

Results 
generated 
circa 2013 
(published 
2015) 

# 
Scenarios

Convergence 
Metric

Obj. Value PH L.B. Time

3 0.0 (in 5 iters) 64156.14 64107.06 41 s.

5 0.0011 (in 20 iters) 62669.10 62612.79 127 s.

100 0.0 (in 8 iters) 61386.90 61349.97 105 s.

25 0.0 (in 11 iters) 60933.85 60883.27 167 s.

50 0.0 (in 9 iters) 60618.77 60577.50 207 s.

Results 
generated 
March 
2018

New UC model, fewer PH tweaks, and new 
persistent solver interfaces in PySP

Note: All times are with out-of-the-box Pyomo



Epi-Spline-Based Scenario Creation
 For a subset of hours in day (i.e., hours 1, 12, 24), calculate empirical 

forecast error CDF from relevant* historical forecast/actual pairs
 Correlations in forecast error drop off quickly with time, allowing 

for independent calculations
 Divide distribution at cut points, and calculate the weighted average of 

the distribution between each cut point pair
 Apply error value to next-day forecast to obtain scenario value



In Wind Energy (2017)



Probabilistic (Bulk) Solar Scenarios



Under review (revision) with Solar Energy



High-Quality Scenarios Yields 
Very Difficult Stochastic UCs
 There is a remarkably and unexpectedly strong correlation 

between the nature of probabilistic scenarios for renewables 
and difficulty of solution via decomposition (PH) algorithms

To appear in Probabilistic Methods Applied to Power Systems (PMAPS) Conference -
2018



On Diversity of Renewables 
Scenarios and Problem Difficulty

Iteration counts and solution times (wall clock) by PH, considering WECC-240++ generator fleet
(a) 7 iterations – ~120 seconds
(b) 100 iterations (limit) – ~600 seconds (!)
(c) 200 iterations (limit) – ~1400 seconds (!!!)

Presenter
Presentation Notes
It’s the low-wind scenarios that were causing trouble.
Hypothesis: Weights want more generation to go offline, “exposing” the non-convexity induced by the demand balance constraint.



A Solution: Cross-Scenario Feasibility 
Cuts
 Idea: Enforce feasibility in the first stage (the commitments) to help ensure there is 

sufficient generation online to meet the “worst case” net load in each time period

�
𝑔𝑔∈𝐺𝐺

( �𝑃𝑃𝑔𝑔 ⋅ 𝑢𝑢𝑡𝑡
𝑔𝑔) ≥ max

𝑠𝑠∈𝑆𝑆
𝐷𝐷𝑡𝑡𝑠𝑠 + 𝑅𝑅𝑡𝑡𝑠𝑠 −𝑊𝑊𝑡𝑡

𝑠𝑠

 This brings more generation online in scenarios with low net-load
 A similar idea works to help ensure there is no over-generation in any scenario 

�
𝑔𝑔∈𝐺𝐺

(𝑃𝑃𝑔𝑔 ⋅ 𝑢𝑢𝑡𝑡
𝑔𝑔) ≤ min

𝑠𝑠∈𝑆𝑆
𝐷𝐷𝑡𝑡𝑠𝑠

 This prevents too many generators from coming online in scenarios with high net-load

 Critical observation
 These cuts can be computed in parallel
 And prior to execution of progressive hedging
 Bonus: These cuts are simple and “obvious”

Presenter
Presentation Notes
Equation 1: \overline{P}^g is the max power output for each generator, u^g_t is the (first-stage) commitment variable for generator g at time t, G is the set of generators. D^s_t, R^s_t, and W^s_t, are the demand, reserve requirement, and wind power available at time t in scenario s. Therefore the right-hand-side is the *most* the thermal generators could have to cover in time period t, and therefore helps prevent *under* generation in any time period.

Equation 2: \underline{P}^g is the minimum power output for each generator (and all others are same). Notice this helps prevent *over* generation in any time period, and assumes infinite curtailment of the wind (but doesn’t have to, could be reformulated with any level of wind curtailment that’s acceptable).

Other notes: Equation 1 can be made better by including the start-up/shut-down ramping trajectories for each generator (which is implemented as an option). Both equations in practice are formulated with slack and penalties. Of course, *neither* equation guarantees feasibility in the presence of ramping constraints, but does for a simple generator. Both are also easy certificates of infeasibility for the overall stochastic program if some scenario can’t satisfy either inequality in all time periods.



The Impact of Cross-Scenario Cuts (1)

”Standard” progressive 
hedging (350 seconds)

Progressive hedging with 
cross-scenario (80 seconds)



The Impact of Cross-Scenario Cuts (2)
 Running on WECC-240++ scenarios for a simulated month (May) 

with high renewables penetration
 50 and 100 scenarios per instance
 Generally observe wall clock reductions of 80%
 In all but one case the run time did not exceed 210 seconds
 In that one exception case, the reduction in wall clock time was only 20%

 Summary
 We can address very difficult stochastic UC instances efficiently
 But there are a few outliers that remain very difficult to solve

 More research!

27



The RTS-GMLC Test Case

Not intended to represent existing infrastructure

• A refresh of the IEEE RTS case

• github.com/GridMod/RTS-GMLC 

A modern generation fleet…



Toward Full-Scale Public UC Test Sets

 365 deterministic and stochastic UC instances for RTS-GMLC
 Developed using NREL wind and solar data sets
 Publicly released once paper on deterministic RTS-GMLC is submitted
 Contact me if you’re interested for a preview case or three

 Larger instances are ”available” – or at least have been 
constructed and analyzed
 Derived from NREL’s Eastern Renewable Generation Integration Study

 Not releasable due to CEII (Critical Infrastructure) issues
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Conclusions

 Due to recent modeling, algorithmic, and implementation 
enhancements…
 … we can actually solve at least modestly sized stochastic UC instances 

in operationally relevant time scales 
 … and with realistic probabilistic scenarios as input

 The availability of difficult, realistic stochastic UC instances is 
what drove this advance
 We are moving to making such stochastic UC instances available to 

the general research community
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Questions? 

 Contact:
 Ben Knueven, bknueve@sandia.gov
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