Distributed Computing & Stochastic Control for Demand Response In Mass Markets

Federal Energy Regulatory Commission
Washington DC, June 27, 2018

Alex Papalexopoulos, Ph.D.
CEO & Founder, ECCO International, Inc.
CEO & Chairman of the Board, ZOME Energy Networks, Inc.
San Francisco, CA
alexp@eccointl.com
alexp@zomepower.com
Outline

- Current DR Programs
- Key Challenges of a New Approach
- High Level Process of the New Approach
- Technology and the Load Controller
- ColorPower™ Algorithm
- Formal Control Problem & Important Constraints
- Control Design Issues
- Cloud-Based Architecture
- ColorPower™ Energy Token
- Conclusions
Multi-Market Integrated Electricity Framework

Market Operator / Transmission System Operator

T-D Interface

DSO

DSO

DSO

DER Merchant

DER Merchant

End Use Customers & Behind the Meter DR

End Use Customers & Behind the Meter DR

© Copyright 2018 ECCO International, Inc.
Where is the Problem
(The Era of Coercion Should Come to an End)

- Current DR programs are based on command and control approaches; programs are grouped in 4 groups:
- Customers submit their appliances to direct utility on/off load control
- Customers are exposed to price volatility—a concept called “prices-to-devices”; this is the “holy grail” today for activating DR in wholesale organized markets
- DR aggregators pay people for remote shutoff options; growth has stalled because customers see no other value than trading inconvenience for cash
- Finally, some programs rely on advanced analytics to predict customer behavior and drive messaging and pricing; they try to outguess what customers will do instead of asking them for their preferences
Key Challenges

- **Scalability:**
 - Safe, reliable coordinated response from millions of devices in < 2-4 minutes

- **Consumer interface:**
 - High benefit, low “annoyance factor”
 - Eliciting useful information (preferences)
 - Privacy concerns (detailed data and devices should remain private) – This means computations should be performed on consumer aggregates

- **Deployability:**
 - Technology alignment with market & regulatory structure
 - Market fragmentation across grid & in home

- **Fairness**
High Level Process

- ColorPower agent (say customer’s meter) aggregates device flexibility information which is further aggregated across a network.
- This forms a model of the overall system flexibility.
- This system flexibility, along with a demand shaping target provided by the Utility or the Aggregator, is redistributed to every device in the system.
- The devices then execute a distributed control algorithm (like flipping weighted coins) to determine if they respond or not.
ColorPower ™ Algorithm

- Challenge: fast, private, robust, non-intrusive
- Approach: randomized distributed control
 - Aggregate flexibility information to shared model
 - Disseminate control signals
 - Local decision; coin-flip for fractional color
 - Weight for availability, over-damped control

Control problem: long timeouts on state changes
ColorPower ™ State Transitions

- Within each color, each device: (E)nabled vs. (D)isabled
- (R)efractory (it cannot switch states) vs. (F)lexible (eligible to switch)
ColorPower ™ State Transitions

- The evolution of each device is modeled like a modified Markov process.
- In each round devices in state EF randomly switch off to state DR.
- Once in DR device waits for certain rounds before transitions to state DF; the waiting time is a fixed number PLUS a uniform random addition to feather the distribution (so not many devices switch states at once).
- The other two distributions are complementary.
For each ColorPower client, set p_{on}, p_{off} for each device group, such that the total enabled power in $s(t)$ tracks $g(t)$.
Formal Control Problem

- The control problem is to set the transition probabilities such that the total Enabled Demand tracks the target as closely as possible, subject to the constraints
- Device with lower numbered colors are shut off first
- If a color has devices that are Enabled and Disabled, then every device is equally likely to be disabled
- No device is unfairly burdened by its initial bad luck in becoming Disabled
Control Problem Goals

- Continuous tracking (continuously track target power curtailment as loads change)
- User control (color priority)
- Fairness
- Cycling & Limited disruption
Control Problem Constraints

1. **Goal tracking**: shape power demand

\[g(t) = \sum_i |EF_i| + |ER_i| \]

- (Sum of Enabled Demand over all colors \(i \) is equal to the goal)
- Typical transient response 2 to 4 minutes
- Simultaneous tracking of DR events and other rules applied to groups of facilities
Control Problem Constraints

2. **Color priority**: respect user preferences

\[|EF_i| + |ER_i| = \begin{cases}
D_i - D_{i+1} & \text{if } D_i \leq g(t) \\
g(t) - D_{i+1} & \text{if } D_{i+1} \leq g(t) < D_i \\
0 & \text{otherwise}
\end{cases} \]

\[D_i = \sum_{j \geq i} |EF_j| + |ER_j| + |DF_j| + |DR_j| \]

- Demand \(D_i \) is the demand for the ith color and above
- Devices are Enabled from the highest color down until the goal is reached
- Users choose a ‘color’ for each device indicating willingness to be flexible in DR events
- User controllable from anywhere in the world via web or mobile app
Control Problem Constraints

- **3. Fairness:** no devices are favored
 \[\forall_{a,a'} c(t, a) = c(t, a') \]
 - Meaning that the control state is identical for every agent
 - Within the same user-selected color, treat all devices equally on average
 - Use randomized algorithms to ensure average equal treatment
 - Use load information only in aggregate
 - Individual device load does not affect DR behavior
 - Balance curtailment across different device types
Control Problem Constraints

4. **Cycling**: don’t keep the same devices off

\[\forall_{a,a'} c(t, a) = c(t, a') \]

This means that as long as there are both Enabled and Disabled devices, some of them should be changing from Enabled to Disabled to vice versa

\[(|EF_i| > 0) \cap (|DF_i| > 0) \implies (p_{on,a,i} > 0) \cap (p_{off,a,i} > 0) \]

5. **Limited Disruption**: Spread the curtailment as broadly as possible

- Smart plugs—gradually cycle through which devices are off
- HVAC—as small as possible temperature change across more homes
- Avoid frequent switching of loads
Controller Design Issues

- It is possible that not all constraints can be satisfied; some of them are more important than others.
- Customer preferences are the most important ones.
- Goal tracking is the second most important.
- Least important is the Cycling constraint.
- The Fairness constraint is the easiest to satisfy (simply the same stochastic algorithm on all clients is executed).
- We view the controller as having a “budget” of flexibility to spend with each color offering up to $|EF|$ of potential reduction in demand.
Controller Design Issues

- Flexibility builds up as Refractory devices finish their time outs and move to the Flexible state.
- The controller is formulated as a cascade of priorities of how to spend the “Flexibility budget” indicated by the state $s(t)$.
- As the controller considers each constraint in turn, it allocates flexibility to satisfy that constraint (as much as possible).
- Then it attempts to satisfy the rest of the constraints with whatever flexibility remains unallocated.
- Any unallocated flexibility is allowed to accumulate as a reserve improving future controllability.
ColorPower™ Energy Demand Cloud

- Price Sensitive
- Special Programs
- Distributed Generation
- Electric Vehicles
- Reliability Signaled
- Renewable Choice
- Energy Storage
- Affinity Programs

Demand Monitoring & Feedback over Internet Broadband/Cellular

- Individual Wireless Controllers
- Home/Facility Management Systems
- Smart Buildings, Commercial & Industrial
- Electric Vehicle Chargers
- Smart Appliances
- Distributed Energy & Storage

TODAY

FUTURE

© Copyright 2018 ECCO International, Inc.
ColorPower Cloud-Based Implementation

- Cloud based—leverage modern cloud infrastructure
- Leverage smart devices people already have in their homes—smart thermostats, smart plugs, etc.
- Combine measurement and modeling
- Micro-Service Architecture
- Single API for everyone
- Independently Scalable
- Extendable with High Performance
Cloud Architecture

Arrows start at request origin and points to request destination.

- **Black Arrows** – Request/Response type requests.
- **Red Arrows** – Event type requests.

All greens represents components owned by Zome.
- **Mint** – externally facing components.
- **Mantis** – core algorithmic and CnC virtual stack.
- **Moss** – Supplemental micro-services.

Yellow – customer agents / services.
Blue – third party and supplemental APIs.
Cloud Architecture

- **Device Manager** – Responsible for all device communications and state maintenance
- **Power Predictor** – Projects power use of the device when data is not available (thermostats) using behavioral models
- **Power Modeler** – Uses data gathered from the devices to generate device behavior models that will be used by the Predictor
- **Controller** – Heart of the system, location of the ColorPower algorithm; tasked with maintaining state of the grid and giving orders to devices to curtail power
- **Emulator Micro Service** is responsible for emulating devices; this allows ColorPower to run complex simulations on various “what if” scenarios
ColorPower Energy Token

- We are in the process of building a blockchain technology and we plan to introduce a utility crypto token: ZENT
- CP platform contributors (device owners) will be rewarded for participation in power saving events with ZENTs
- CP services with time will be purchasable only with ZENT tokens, to enable a robust and healthy energy token ecosystem
- Modularized cloud architecture allows CP to quickly integrate virtually any connected device into our system
- Adding support for new device takes days
- Today CP supports:
 - HIVE Thermostats
 - BOSS Smart Plug
 - Majority of generic power intensive z-wave devices (thermostats, power plugs)
Smart Devices

- Some example devices from our last deployment
Combine Measurement and Modeling

- For dynamic tracking of power use, we combine both measured power, when available, with model-based estimates
 - Some smart plugs provide power measurements when on
 - Thermostats do not indicate power of HVAC
- Physics-based models to estimate power when not available
- Combined information from many sources
 - Weather, location, local home construction statistics, etc.
 - Leverage AI machine learning techniques
Conclusions

- Current DR programs are not successful
- The new cloud-based proposed algorithm is based on a distributed computing based stochastic control algorithm allows fast, accurate and robust control of thousands to millions of devices
- Performance can be accurately predicted from stochastic model analysis; performance is robust against fluctuations, errors, and variation between devices
- We are in the process of rolling out three (3) products in San Francisco, Chicago and New York: CP for MDUs, CP for neighborhoods and HVAC Analytics
- We’ll aggregate capacity and offer it in the ISO markets for various grid services and products by end of this year