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Blackouts and power system restoration

O Ohio blackout of 2003
— Initiated by fault of HV power line

— 50 million affected, 11 deaths, $6 billion
O European blackout of 2006

— Initiated by routine disconnection of HV power line
— 10 million affected, 100 trains delayed
— Forced operators to improve their resynchronization procedures

O Chilean blackout of 2011
— Initiated by fault at HV capacitor

— Restoration delayed because of procedural and equipment issues
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Literature on power system restoration

0 (Hou et al., 2011) and (Liu et al., 2012) propose a step-wise stategy
based on achieving pre-specified milestones

0 (Sun et al., 2011) optimizes the startup strategy for generators
considering only active power in a copper-plate model of the grid

0 (Chou et al., 2013) formulates a mixed-integer non-linear problem for
restoration and provides solutions using an heuristic algorithm

0 (Coffrin and Van Hentenryck, 2014) solve the optimal restoration
problem using a LP approximation of the AC power flow equations on
a network with 266 components
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Contributions

O We propose an MILP approximation of the AC power flow equations
based on minimum square-error

— LP relaxation is sufficient under scarcity of reactive power
—  MILP necessary under excess of reactive power

O We specialize the integer L-shaped method for solving optimal power
system restoration on realistic instances

— Stronger island-based no-good cuts
— Hybrid Benders-no-good cuts

O We present numerical results for IEEE test systems and for the
Chilean power grid with 3696 components (buses, branches,
compensation, generators) — one order of magnitude larger than
state-of-the-art
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AC relaxations in power

system restoration: an example

Bus 1 Bus 2
| |
1800MVA

500kV R = 0.0025pu 500kV

X =0.0286pu
G = Opu
B = 2.6888pu
290MVA -75MVA -75MVA

Qmin = -80.7MVAr
Qmax = 73.8MVAr

Is it possible to energize line 1-27

Full AC answer: No, excess of reactive power
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AC relaxations in power system restoration: an example
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Piece-wise linear approximations of continuous functions

0 (Toriello and Vielma, 2012): a partition I of the interest domain for
the approximation and a set of slopes a; and intercepts b;

Problem: we have a continuous function f : R® — R that we wish to

A

approximate with a piecewise linear function f : R™ — R defined as

f@)=alc+bifelgxe=<al icl,

O Determine a:ZL, ng Vi € I — equal curvature intervals

0 Determine al,b; Vi € I — solve:

min Z/ (a;fpzc + b; — f(g;))%lm

[z =] ]

st. ajx+b =a;x+b; VreF(i,j)),V(i,j)€F

LLNL-PRES-753615

This work was performed under the auspicies of the U.S. Department
of Energy by Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

10



Approximating AC power flow equations

D1 (Ul, V2, 5) = U%glg — V10V2g12 COS(5) — Ulvlblz sin(5)
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Power system components

0 Power transformers:

— N-windding transformers (N > 2) — star model
— Phase shifters — adder to angle difference
— Voltage tap-changers — adder to voltage magnitude

O Shunt compensators: sectionalized and variable compensators
(FACTYS)

0 Voltage-responsive loads:

p+s=P- -v*
g=Q v -p/(P-v?)

Linear approximation of p + s, linear + McCormick for ¢
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Optimal power system restoration

O Objective: return the system to normal operation

O Critical loads must be energized, normal load is a tool

max Z (inertia(t) + # branches energized(t))
t

s.t. generators: off, cranking, normal operation
branches: can be energized at £ only if a terminal
is energized on t — 1
buses: can be energized only if connected to
energized line or generator™®

grid: must be AC feasible for all ¢
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Integer L-shaped algorithm

O ldea: exploit procedure followed by operators
O Master problem: energization decisions for all components (ILP)

0 Slave problem: AC feasibility for all ¢ (NLP, approximated by MILP)

1. Start solving integer master

2. Whenever a new incumbent of the master is found:

(a) Detect islands (connected components) of the grid for all ¢
(b) Check feasibility of each island (highly parallelizable)
(c) Add island feasibility cuts to master

3. Return to 2.
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No-good island cuts

O Islands are specified by:
—  Subset of buses, IV;

— Non-energized/energized branches connected buses in IV,
1 1

— Non-energized/cranking/energized generators connected to buses
in Nzﬁ GZOFF/GZC’RANK/G?N

0 No-good island cut (if island is infeasible)

Z uy + Z(l—ul)—l— Z Ug + ... > 1

leLOFF leLON geGOTE

O Feasibility cuts can be shared across all periods, limited to a window
for practical performance
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Hybrid Benders-no-good island cuts

O Solving convex relaxation of MILP approximation, similar to LP
approximation (Coffrin and Van Hentenryck, 2014)

O |f convex relaxation is infeasible, the following cut is valid

V+Z<Wgug+ngg>§M' Z w Z(l_ul)

geG; leL?FF ZEL?N

where V, W, X describe an unbounded ray of the dual of the
underlying convex relaxation and M is computed for each cut

O Prevents arbitrarily large parameters (transmission switching)
from affecting cuts

0 Using locally ideal formulation for MILP approximation (Sridhar et
al., 2013) — convex relaxation corresponds to LP relaxation
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Simulation setting

Test instances.

Name # buses | # branches | # shunts | # gens | # loads | T
IEEE-30* 39 46 0 10 21 50
IEEE-118* 118 186 14 55 99 50
Chilean SIC 1548 1954 159 297 605 100

O Implemented using Julia, JuMP, LightGraphs (island detection), Ipopt

(approximation) and Cplex (LP/MILP solves)

0  Solving restoration with DC oracle (DC), convex relaxation of MILP

AC approximation (Cvx AC) and MILP AC approximation* (AC)

0 Each experiment ran on single node of cab cluster: 16 cores, 32 GB
of memory (no parallelization at this point)
O Lazy piece-wise modelling of AC power flow with up to 4 pieces, cut

window: 1 period backward, 5 periods forward
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Performance on |IEEE-39

O Identical optimal restoration plan for DC, Cvx AC and AC

— Pgmi” = (0 Vg — generators can be turned on without load

— Short lines (small shunt capacitances) — no need for picking up
load

O  Optimal plan is first incumbent of the master (no cuts added),
solved in 8.5 (DC) — 16.6 (AC) secs
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Performance on IEEE-118

O ldentical optimal plans for DC and Cvx AC, different for AC

0  Solved in 10.3 secs for DC, 15.8 secs for Cvx AC and 772.5 secs for
AC

O AC feasibility delays energization of several branches because of
excess of reactive power

Snapthots of AC restoration plan

o
ooooo

t =10 t =12 t=14
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Performance on the Chilean SIC

O Slightly different optimal restoration plans for DC and Cvx AC, while
AC runs out of time (16hrs)

O Hundreds to thousands of cuts applied to the master, solved in 707.1
secs (DC) and 838.2 secs (Cvx AC)

Cvx AC restoration plan att =5
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Performance on the Chilean SIC

O Slightly different optimal restoration plans for DC and Cvx AC, while
AC runs out of time (16hrs)

O Hundreds to thousands of cuts applied to the master, solved in 707.1
secs (DC) and 838.2 secs (Cvx AC)

Cvx AC restoration plan at ¢t = 11
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Conclusions

O Convex relaxations of AC power flow fail in situations of excess of
reactive power

O Hybrid cuts: stronger than no-good cuts and (likely) to be applicable
In other contexts

O L-shaped approach allows to solve systems one order of magnitude
larger than state-of-the-art using convex relaxation
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Future extensions

Parallelization of feasibility check — expected speedups of 20-50
Speeding-up solution of AC MILP feasibility check

Primal heuristics: rolling horizon and convex relaxation

o o o 0O

Solving (stochastic) optimal black-start allocation, optimal islanding
and green power system planning
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