

# Scheduling and Pricing of Energy Storage in Electricity Market

#### Roohallah Khatami

Ph.D. Candidate, Electrical and Computer Engineering, University of Utah

Contributors: Masood Parvania, Pramod Khargonekar, Juan Zhang

FERC Technical Conference on Increasing Real-Time and Day-Ahead Market Efficiency and Enhancing Resilience Through Improved Software, Washington, DC

June 26-28, 2018

### Motivation and Research Question

- How to valuate and price energy storage in electricity markets?
- How does energy storage impact the marginal electricity price?
- Does energy storage create any intertemporal correlation in marginal electricity prices?
- What is the monetary value of energy stored in energy storage?
- How does market-based and non-market operation of ES impact marginal prices?
- How does the energy storage charging/discharging offers/bids in market impact prices?

## Energy Storage in Day-ahead Markets



#### Continuous-time Unit Commitment Model

- Assume  $\Delta t \rightarrow 0$ , so the set of K generating units are modeled by:
  - Continuous-time generation trajectories:  $\mathbf{G}(t) = (G_1(t), \dots, G_K(t))^T$
  - Continuous-time commitment variables:  $\mathbf{I}(t) = (I_1(t), \dots, I_K(t))^T$
  - Continuous-time ramping trajectories:  $\dot{\mathbf{G}}(t) = (\dot{G}_1(t), \dots, \dot{G}_K(t))^T$ ,

$$\dot{G}_k(t) \triangleq \frac{dG_k(t)}{dt}$$

<sup>&</sup>lt;sup>1</sup> M. Parvania, R. Khatami, "Continuous-time Marginal Pricing of Electricity," *IEEE Transactions on Power Systems*, vol. 32, no. 3, pp. 1960-1969, 2017.

#### Continuous-time Unit Commitment Model

- Assume  $\Delta t \rightarrow 0$ , so the set of K generating units are modeled by:
  - Continuous-time generation trajectories:  $\mathbf{G}(t) = (G_1(t), \dots, G_K(t))^T$
  - Continuous-time commitment variables:  $I(t) = (I_1(t), \dots, I_K(t))^T$
  - Continuous-time ramping trajectories:  $\dot{\mathbf{G}}(t) = (\dot{G}_1(t), \dots, \dot{G}_K(t))^T$ ,

$$\dot{G}_k(t) \triangleq \frac{dG_k(t)}{dt}$$

• Cost function of generation and **ramping**:  $C_k(G_k(t), \dot{G}_k(t), I_k(t))$ 

<sup>&</sup>lt;sup>1</sup> M. Parvania, R. Khatami, "Continuous-time Marginal Pricing of Electricity," *IEEE Transactions on Power Systems*, vol. 32, no. 3, pp. 1960-1969, 2017.

#### Continuous-time Unit Commitment Model

- Assume  $\Delta t \rightarrow 0$ , so the set of K generating units are modeled by:
  - Continuous-time generation trajectories:  $\mathbf{G}(t) = (G_1(t), \dots, G_K(t))^T$
  - Continuous-time commitment variables:  $\mathbf{I}(t) = (I_1(t), \dots, I_K(t))^T$
  - Continuous-time ramping trajectories:  $\dot{\mathbf{G}}(t) = (\dot{G}_1(t), \dots, \dot{G}_K(t))^T$ ,

$$\dot{G}_k(t) \triangleq \frac{dG_k(t)}{dt}$$

- Cost function of generation and **ramping**:  $C_k(G_k(t), \dot{G}_k(t), I_k(t))$
- Continuous-time Unit Commitment  $\rightarrow$  a variational problem<sup>1</sup>:

$$\begin{aligned} \min_{\mathbf{G}(t),\mathbf{I}(t)} & \int_{\mathcal{T}} C(\mathbf{G}(t),\dot{\mathbf{G}}(t),\mathbf{I}(t))dt \\ \text{s.t.} & \mathbf{1}^{T}\mathbf{G}(t) = D(t), \qquad (\lambda(t)), \quad t \in \mathcal{T} \\ & \mathbf{h}(\mathbf{G}(t),\dot{\mathbf{G}}(t),\mathbf{I}(t)) \leq 0, \quad (\gamma(t)), \quad t \in \mathcal{T} \end{aligned}$$

<sup>&</sup>lt;sup>1</sup>M. Parvania, R. Khatami, "Continuous-time Marginal Pricing of Electricity," *IEEE Transactions on Power Systems*, vol. 32, no. 3, pp. 1960-1969, 2017.

## Continuous-time Modeling of Energy Storage Operation

Generic Energy Storage Device



- ES Differential State Equation:  $\frac{dE^s(t)}{dt} = \eta^c D^s(t) \eta^{d-1} G^s(t), \ t \in \mathcal{T}$
- ullet Charging Ramping Trajectories:  $rac{dG^s(t)}{dt}=\dot{G}^s(t)$
- Discharging Ramping Trajectories:  $\frac{dD^s(t)}{dt} = \dot{D}^s(t)$
- Charging Utility Function:  $U^{S}(D^{s}(t), \dot{D}^{s}(t))$
- Discharging Cost Function:  $C^{S}(G^{s}(t), \dot{G}^{s}(t))$

# Continuous-time Co-Optimization of Energy Generation and Storage

$$\min_{\dot{\mathbf{G}}(t),\dot{\mathbf{G}}^{s}(t),\dot{\mathbf{D}}^{s}(t)} \int_{\mathcal{T}} C^{G}(\mathbf{G}(t),\mathbf{I}(t)) dt + \int_{\mathcal{T}} C^{S}(\mathbf{G}^{s}(t)) dt - \int_{\mathcal{T}} U^{S}(\mathbf{D}^{s}(t)) dt,$$
s.t. 
$$\frac{d\mathbf{E}^{s}(t)}{dt} = \eta^{c} \mathbf{D}^{s}(t) - \eta^{d-1} \mathbf{G}^{s}(t), \ t \in \mathcal{T}, \ \left(\gamma^{s,E}(t)\right),$$

$$\mathbf{1}_{K}^{T} \mathbf{G}(t) + \mathbf{1}_{R}^{T} \mathbf{G}^{s}(t) = D(t) + \mathbf{1}_{R}^{T} \mathbf{D}^{s}(t), \ t \in \mathcal{T}, \ (\lambda(t)),$$

$$\mathbf{h}(\mathbf{G}(t),\mathbf{I}(t),\mathbf{G}^{s}(t),\mathbf{D}^{s}(t)) \leq 0, \ t \in \mathcal{T}, \ (\gamma(t))$$

$$\mathbf{f}(\dot{\mathbf{G}}(t),\dot{\mathbf{G}}^{s}(t),\dot{\mathbf{D}}^{s}(t)) \leq 0, \ t \in \mathcal{T}, \ (\mu(t))$$

$$\mathbf{G}(0) = \mathbf{G}^{0}, \mathbf{G}^{s}(0) = \mathbf{G}^{s,0}, \mathbf{D}^{s}(0) = \mathbf{D}^{s,0}, \mathbf{E}^{s}(0) = \mathbf{E}^{s,0}.$$

# Continuous-time Marginal Price of Generation and Storage

#### Theorem (Continuous-time Marginal Price)

Consider the optimal control problem of co-optimizing energy generation and storage. For any optimal solution of the problem, the optimal Lagrange multiplier trajectory  $\lambda(t)$  associated with the continuous-time power balance constraint is the rate at which the objective functional is changed due to an incremental variation in load  $\delta D(t)$  at time t, and is continuous-time marginal price of energy generation and storage.

# Continuous-time Marginal Price of Generation and Storage

#### Theorem (Continuous-time Marginal Price)

Consider the optimal control problem of co-optimizing energy generation and storage. For any optimal solution of the problem, the optimal Lagrange multiplier trajectory  $\lambda(t)$  associated with the continuous-time power balance constraint is the rate at which the objective functional is changed due to an incremental variation in load  $\delta D(t)$  at time t, and is continuous-time marginal price of energy generation and storage.

#### **Optimality Conditions:**

- Pontryagin Minimum Principle (PMP)
- Adjoint Equations
- First Order Conditions
- Complimentarity Slackness Conditions
- Jump and Transversality Conditions



## Net Incremental Surplus of Stored Energy (NISSE)

### Definition (Net Incremental Surplus of Stored Energy)

The adjoint function  $\gamma_r^{s,E}(t)$  associated with the ES state equation represents the net surplus of incremental change in the energy stored at ES device r at time t, and is defined as the net incremental surplus of stored energy (NISSE).

## Net Incremental Surplus of Stored Energy (NISSE)

### Definition (Net Incremental Surplus of Stored Energy)

The adjoint function  $\gamma_r^{s,E}(t)$  associated with the ES state equation represents the net surplus of incremental change in the energy stored at ES device r at time t, and is defined as the net incremental surplus of stored energy (NISSE).

• *NISSE* is set at the start of charging and stay constant:

$$\gamma_r^{s,E}(t_r^{c1}) = \frac{1}{\eta_r^c} \left( \frac{\partial U^S(D_r^s(t))}{\partial D_r^s(t)} \Big|_{t=t_r^{c1}} - \lambda(t_r^{c1}) \right)$$

• NISSE stays constant during discharging unless ES is fully charged:

$$\gamma_r^{s,E}(t_r^{d1}) = \gamma_r^{s,E}(t_r^{c2}) - \int_{t_r^{c2}}^{t_r^{d1}} \left( \overline{\nu}_r^{s,E}(t) \right) dt$$

#### Closed-form Price Formula when ES is Idle

**Case 1**: Generating units set the marginal price (ES is idle)

$$\lambda(t) = \sum_{k \in (K_t^u \cup K_t^r)} IC_k^G(t) \frac{\partial G_k(t)}{\partial D(t)} + \sum_{k \in K_t^r} \left( \underline{\dot{\mu}}_k^G(t) - \overline{\dot{\mu}}_k^G(t) \right) \frac{\partial G_k(t)}{\partial D(t)}$$

#### Closed-form Price Formula when ES is Idle

**Case 1**: Generating units set the marginal price (ES is idle)

$$\lambda(t) = \sum_{k \in (K_t^u \cup K_t^r)} IC_k^G(t) \frac{\partial G_k(t)}{\partial D(t)} + \sum_{k \in K_t^r} \left( \underline{\dot{\mu}}_k^G(t) - \overline{\dot{\mu}}_k^G(t) \right) \frac{\partial G_k(t)}{\partial D(t)}$$

- The continuous-time marginal price provides a price signal that reflects the impacts of continuous-time load variations on the operating conditions of the system.
- The continuous-time marginal price embeds the ramping limitations of generating units in electricity prices.

## Closed-form Price Formula when ES is Charging

Case 2: Generating units and ES devices in charging state set the price

$$\lambda(t) = \sum_{k \in (K_t^u \cup K_t^r)} IC_k^G(t) \frac{\partial G_k(t)}{\partial D(t)} + \sum_{k \in K_t^r} \left( \underline{\dot{\mu}}_k^G(t) - \overline{\dot{\mu}}_k^G(t) \right) \frac{\partial G_k(t)}{\partial D(t)}$$
$$- \sum_{r \in (R_t^u \cup R_t^r)} IU_r^S(t) \frac{\partial D_r^s(t)}{\partial D(t)} + \sum_{r \in R_t^r} \left( \underline{\dot{\mu}}_r^{s,D}(t) - \overline{\dot{\mu}}_r^{s,D}(t) \right) \frac{\partial D_r^s(t)}{\partial D(t)}$$

## Closed-form Price Formula when ES is Charging

Case 2: Generating units and ES devices in charging state set the price

$$\lambda(t) = \sum_{k \in (K_t^u \cup K_t^r)} IC_k^G(t) \frac{\partial G_k(t)}{\partial D(t)} + \sum_{k \in K_t^r} \left( \underline{\dot{\mu}}_k^G(t) - \overline{\dot{\mu}}_k^G(t) \right) \frac{\partial G_k(t)}{\partial D(t)}$$
$$- \sum_{r \in (R_t^u \cup R_t^r)} IU_r^S(t) \frac{\partial D_r^S(t)}{\partial D(t)} + \sum_{r \in R_t^r} \left( \underline{\dot{\mu}}_r^{s,D}(t) - \overline{\dot{\mu}}_r^{s,D}(t) \right) \frac{\partial D_r^S(t)}{\partial D(t)}$$

 IU<sub>r</sub><sup>S</sup>(t) is incremental charging cost rate of ES device r:

$$IU_r^S(t) \triangleq \frac{\partial U^S(D_r^s(t))}{\partial D_r^s(t)} - \eta_r^c \gamma_r^{s,E}(t_r^{c1})$$



## Closed-form Price Formula when ES is Discharging

Case 3: Generating units and ES devices in discharging state set the price

$$\lambda(t) = \sum_{k \in (K_t^u \cup K_t^r)} IC_k^G(t) \frac{\partial G_k(t)}{\partial D(t)} + \sum_{k \in K_t^r} \left( \underline{\dot{\mu}}_k^G(t) - \overline{\dot{\mu}}_k^G(t) \right) \frac{\partial G_k(t)}{\partial D(t)}$$

$$+ \sum_{r \in (R_t^u \cup R_t^r)} IC_r^S(t) \frac{\partial G_r^S(t)}{\partial D(t)} + \sum_{r \in R_t^r} \left( \underline{\dot{\mu}}_r^{s,G}(t) - \overline{\dot{\mu}}_r^{s,G}(t) \right) \frac{\partial G_r^S(t)}{\partial D(t)}$$

## Closed-form Price Formula when ES is Discharging

Case 3: Generating units and ES devices in discharging state set the price

$$\begin{split} \lambda(t) &= \sum_{k \in (K_t^u \cup K_t^r)} IC_k^G(t) \frac{\partial G_k(t)}{\partial D(t)} + \sum_{k \in K_t^r} \left( \underline{\dot{\mu}}_k^G(t) - \overline{\dot{\mu}}_k^G(t) \right) \frac{\partial G_k(t)}{\partial D(t)} \\ &+ \sum_{r \in (R_t^u \cup R_t^r)} IC_r^S(t) \frac{\partial G_r^S(t)}{\partial D(t)} + \sum_{r \in R_t^r} \left( \underline{\dot{\mu}}_r^{s,G}(t) - \overline{\dot{\mu}}_r^{s,G}(t) \right) \frac{\partial G_r^S(t)}{\partial D(t)} \end{split}$$

•  $IC_r^S(t)$  is incremental discharging cost rate of ES device r:

$$IC_r^S(t) = \frac{\partial C^S(G^s(t))}{\partial G^s(t)} - \frac{1}{\eta_r^d} \gamma_r^{s,E}(t_r^{d1})$$



## Function Space Solution Paradigm



## Function Space Solution Paradigm



- Study 1: System Operation without ES
- Study 2: System Operation with Operator-owned ES
- Study 3: Market-based System
   Operation with ES Bidding in Market

|                          | Hourly Model | Continuous-time Mode |
|--------------------------|--------------|----------------------|
| Study 1 - Operation Cost | \$459,746.20 | \$461,006.40         |

|         | Hourly Model           |                                        | Continuous-time Model  |                                        |
|---------|------------------------|----------------------------------------|------------------------|----------------------------------------|
|         | Operation<br>Cost (\$) | Cost Saving Compared<br>to Case 1 (\$) | Operation<br>Cost (\$) | Cost Saving Compared<br>to Case 1 (\$) |
| Study 2 | 449,246.7              | 10,499.5                               | 450,041.3              | 10,965.1                               |
|         |                        |                                        | •                      |                                        |

|         | Hourly Model |                      | Continuous-time Model |                      |
|---------|--------------|----------------------|-----------------------|----------------------|
|         | Operation    | Cost Saving Compared | Operation             | Cost Saving Compared |
|         | Cost (\$)    | to Case 1 (\$)       | Cost (\$)             | to Case 1 (\$)       |
| Study 3 | 456,430.5    | 3,315.7              | 457,129.4             | 3,876.9              |



 Study 2: System Operation with Operator-owned ES



 Study 2: System Operation with Operator-owned ES



Study 3: Market-based System
 Operation with ES Bidding in Market



 Study 2: System Operation with Operator-owned ES



Study 3: Market-based System
 Operation with ES Bidding in Market



## Software Implementation: Metis



## Software Implementation: Metis



## Summary

- Continuous-time UC model capture the continuous-time variations of load and renewable resources, and tap the ramping flexibility of generating units and energy storage devices
- Continuous-time models define ramping trajectory as an explicit decision variable and enable accurate ramping valuation in markets
- Continuous-time UC model enables the definition of continuous-time marginal electricity price, which embeds the impacts of ramping and intertemporal ES operation in marginal price formation.
- Coming soon: ES scheduling in real-time (energy and AS) markets

## Further Reading

- R. Khatami, M. Parvania, P. Khargonekar, "Scheduling and Pricing of Energy Generation and Storage in Power Systems," *IEEE Transactions* on *Power Systems*, vol. 33, no. 4, pp. 4308-4322, July 2018.
- M. Parvania, R. Khatami, "Continuous-time Marginal Pricing of Electricity," *IEEE Transactions on Power Systems*, vol. 32, no. 3, pp. 1960-1969, May 2017.
- M. Parvania, A. Scaglione, "Unit Commitment with Continuous-time Generation and Ramping Trajectory Models," *IEEE Transactions on Power Systems*, vol. 31, no. 4, pp. 3169-3178, July 2016.

## Acknowledgment

#### Thanks!

masood.parvania@utah.edu

https://usmart.ece.utah.edu



