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Motivation and Research Question

@ How to valuate and price energy storage in electricity markets?
@ How does energy storage impact the marginal electricity price?

@ Does energy storage create any intertemporal correlation in marginal
electricity prices?

What is the monetary value of energy stored in energy storage?

How does market-based and non-market operation of ES impact
marginal prices?

@ How does the energy storage charging/discharging offers/bids in
market impact prices?
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Continuous-time Unit Commitment Model

@ Assume At — 0, so the set of K generating units are modeled by:
— Continuous-time generation trajectories: G(t)=(Gi(t),...,Gk(t))T
— Continuous-time commitment variables: 1(t)=(h(t),. k()T
— Continuous-time ramping trajectories: G(t)=(Gy(t),...,Gk(t))7,

N de( )
dt

Gk(t)

1M. Parvania, R. Khatami, “Continuous-time Marginal Pricing of Electricity,” IEEE Transactions on Power Systems, vol.
32, no. 3, pp. 1960-1969, 2017.
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— Continuous-time ramping trajectories: G(t)=(Gy(t),...,Gk(t))7,
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e Cost function of generation and ramping: Ci(Gi(t), Gk (1), Ik(t))
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Continuous-time Unit Commitment Model

@ Assume At — 0, so the set of K generating units are modeled by:
— Continuous-time generation trajectories: G(t)=(Gi(t ) CLGr(E)T
— Continuous-time commitment variables: 1(t)=(h(t),. ()T
— Continuous-time ramping trajectories: G(t)=(G(t),... ,GK(t))T,

dGy(t)
dt

Gi(t) £
e Cost function of generation and ramping: Ci(Gi(t), Gk (1), Ik(t))

e Continuous-time Unit Commitment — a variational problem?:
min C(G(t), G(t),I(t))dt
Jmin [ €(6(0).6(.1(1)
st. 17G(t) = D(t), (A(t), teT
h(G(1),G(1),1(r)) <0, (4(¥)), teT

1M. Parvania, R. Khatami, “Continuous-time Marginal Pricing of Electricity,” IEEE Transactions on Power Systems, vol.
32, no. 3, pp. 1960-1969, 2017.
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Continuous-time Modeling of Energy Storage Operation

Generic Energy Storage Device

s D’ (¢t s
o paddE | AU .
Stored Conversion Power Grid
Energy T System f’
Lo G'(9)
M4

ES Differential State Equation: dE;t(t) =n°D*(t) —nd_le(t), teT

. . . . dG* .
Charging Ramping Trajectories: dt(t) = G*(t)

Discharging Ramping Trajectories: dD;t(t) = Ds(t)
Charging Utility Function: U®(D5(t), D(t))
Discharging Cost Function: C*(G*(t), Gs(t))
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Continuous-time Co-Optimization of Energy Generation

and Storage

min / CC(G(t),1(t) dt+/ C(G*(1)) dt—/ U®(D%(t))d

G(1),G5(t),Ds(t)

st E;(t D) G(), te T (7E().
1/G(t )+1TG5( t)= D(t)+1,§DS( t), teT, (A1),

h(G(t), 1(t), G*(t), Ds(t)) 0, teT, (1))
f(G(t),6°(1),D%(1)) <0, teT, (u(t))
G0)= G0 GS(O) GSO,DS(O):DS’O,ES(O):ES’O.
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Continuous-time Marginal Price of Generation and Storage

Theorem (Continuous-time Marginal Price)

Consider the optimal control problem of co-optimizing energy generation
and storage. For any optimal solution of the problem, the optimal
Lagrange multiplier trajectory A(t) associated with the continuous-time
power balance constraint is the rate at which the objective functional is
changed due to an incremental variation in load §D(t) at time t, and is
continuous-time marginal price of energy generation and storage.
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Continuous-time Marginal Price of Generation and Storage

Theorem (Continuous-time Marginal Price)

Consider the optimal control problem of co-optimizing energy generation
and storage. For any optimal solution of the problem, the optimal
Lagrange multiplier trajectory A(t) associated with the continuous-time
power balance constraint is the rate at which the objective functional is
changed due to an incremental variation in load §D(t) at time t, and is
continuous-time marginal price of energy generation and storage.

Optimality Conditions: oo

@ Pontryagin Minimum Principle (PMP) D0

@ Adjoint Equations -

@ First Order Conditions o

@ Complimentarity Slackness Conditions / :

@ Jump and Transversality Conditions t
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Net Incremental Surplus of Stored Energy (NISSE )

Definition (Net Incremental Surplus of Stored Energy)

The adjoint function v*5 () associated with the ES state equation
represents the net surplus of incremental change in the energy stored at

ES device r at time t, and is defined as the net incremental surplus of
stored energy (NISSE ).
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Net Incremental Surplus of Stored Energy (NISSE )

Definition (Net Incremental Surplus of Stored Energy)

The adjoint function v*5 () associated with the ES state equation
represents the net surplus of incremental change in the energy stored at

ES device r at time t, and is defined as the net incremental surplus of
stored energy (NISSE ).

@ NISSE is set at the start of charging and stay constant:

S(ps
’Yf’E( trCl) — ;-rc (8U8D(rsD(rt()t)) |t:trc1 _)\(trcl)>

@ NISSE stays constant during discharging unless ES is fully charged:

PE(E =) - [ (m2E() ot
t

c2
r
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Closed-form Price Formula when ES is Idle

Case 1: Generating units set the marginal price (ES is idle)

NOEEDY 'CE(t)m+ > (gf(t)—ﬁf (t)) %%k((:))

ke(KH{UKY)
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Closed-form Price Formula when ES is Idle

Case 1: Generating units set the marginal price (ES is idle)

NOEEDY /CE(t)%GDk((t?+ > (gf(t)—ﬁf (t)) %C;k((:))

ke(KH{UKY)

@ The continuous-time marginal price provides a price signal that
reflects the impacts of continuous-time load variations on the
operating conditions of the system.

@ The continuous-time marginal price embeds the ramping limitations
of generating units in electricity prices.
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Closed-form Price Formula when ES is Charging

Case 2: Generating units and ES devices in charging state set the price

= S Kes )aGk()+z(uf(r)—uf(r))%%k(f)

ke(K{UKY) ( ) keK{ ( )
_ /US 8D (t) + sD( ) ( ) aDs(t)
rE(g”uR{) Z ( ) ob(1)
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Closed-form Price Formula when ES is Charging

Case 2: Generating units and ES devices in charging state set the price

= S Kes )aGk()+z(uf(t)—uf(r))%%k(f)

ke(K{UKY) ( ) keK{ ( )
_ /US 8D (t) + sD( ) ( ) aDs(t)
rE(g“uR{) Z ( > ob(1)

o IU2(t) is incremental charging
cost rate of ES device r:

oU® (D5 (1))

IU2(t) 2 aD5(0)

S )
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Closed-form Price Formula when ES is Discharging

Case 3: Generating units and ES devices in discharging state set the price

ORI S <Ok S M CHOR G R

ke(KUUKY) kek] oD(t)
8Gs(t) . —s,G aGs(t)
S r S,G _ ’
Y ICOE + Y (i - i) 5 0
re(RIVRY) reR{
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Closed-form Price Formula when ES is Discharging

Case 3: Generating units and ES devices in discharging state set the price

W= 5 g : - 3 (0 -7£10) G
ke(KHUKY) keK!
+ Y /C,S(t) +Z( *SG(t)) %(L’;fs((t?
re(RYURY)

e IC>(t) is incremental discharging
cost rate of ES device r:

0C3(G°(1)) 1 .k
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Function Space Solution Paradigm

Time Discretization

Model
time time
A -
> >
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Simulation Results: IEEE-RTS 4+ CAISO Load

@ Study 1: System Operation without
ES

@ Study 2: System Operation with
Operator-owned ES

@ Study 3: Market-based System
Operation with ES Bidding in Market

Hourly Model | Continuous-time Model
Study 1 - Operation Cost |  $459,746.20 $461,006.40
Hourly Model Continuous-time Model
Operation | Cost Saving Compared | Operation | Cost Saving Compared
Cost ($) to Case 1 ($) Cost ($) to Case 1 (8)
Study 2 |449,246.7 10,499.5 450,041.3 10,965.1
Hourly Model Continuous-time Model
Operation | Cost Saving Compared | Operation | Cost Saving Compared
Cost (5) to Case 1 (5) Cost ($) to Case 1 ($)
Study 3 [456,430.5 3,315.7 457,129.4 3,876.9
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Simulation Results: IEEE-RTS 4+ CAISO Load

@ Study 2: System Operation with
Operator-owned ES
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Simulation Results: IEEE-RTS 4+ CAISO Load

@ Study 2: System Operation with @ Study 3: Market-based System
Operator-owned ES Operation with ES Bidding in Market
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Simulation Results: IEEE-RTS 4+ CAISO Load

@ Study 2: System Operation with
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Software Implementation: Metis

7 Metis-v10
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Software Implementation: Metis

7 Results
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@ Continuous-time UC model capture the continuous-time variations of
load and renewable resources, and tap the ramping flexibility of
generating units and energy storage devices

@ Continuous-time models define ramping trajectory as an explicit
decision variable and enable accurate ramping valuation in markets

@ Continuous-time UC model enables the definition of continuous-time
marginal electricity price, which embeds the impacts of ramping and

intertemporal ES operation in marginal price formation.

e Coming soon: ES scheduling in real-time (energy and AS) markets
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