The Flex DA/RT Co-Optimization Model Method:

A More Efficient Unit Commitment For an Uncertain Grid

FERC Technical Conference: Increasing RT/DA Efficiency Through Improved Software Washington, D.C. June 22-24, 2015

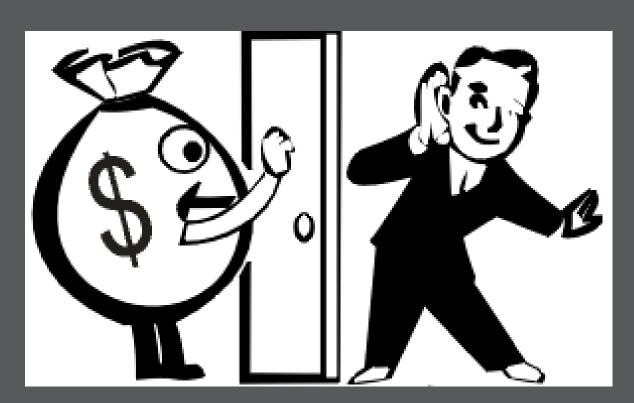
Charlie Noble

Overview

- 1. Setting the DA Position: A Brief History
- 2. Proposed Methodology
- 3. Characteristics of the Modified Solution
- 4. Review of DA & RT Deviation MISO
- 5. Modification of the Objective Function
- 6. Example Flex DA/RT
- 7. Benefits of the Flex DA/RT Methodology
- 8. Summary
- 9. Q/A Session

- Minimize Expected Costs
 - DA Exposure is Hedged
 - Risks Are Managed
 - Portfolio is Positioned to Take Advantage of Real-Time Opportunities

- Hedge
 - Use of One or More Positions Within a Portfolio to Offset All or Part of the Risks Associated With Other Positions Within the Portfolio



- Risk
 - Associated With Future Outcomes Not in Your Control
 - Taking Risks Can Be Beneficial or Costly

- Opportunity
 - Associated With Future Outcomes That Are in Your Control
 - E.g., Raising Generation When Prices Are High and Lowering Generation When Prices Are Low

Unit Commitment Today?

Hedging:

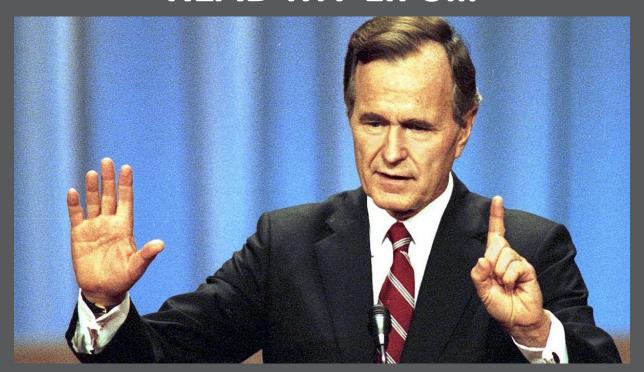
 Committing the Most Cost-Effective Combination of Resources That Offset the Forecasted Energy and Ancillary Requirements, While Respecting Transmission and Unit Operation Constraints

• Risk:

- Acquisition of Spinning and Non-Spinning Reserves
- Reliability Unit Commitment (RUC)

Opportunity?

Proposed Methodology

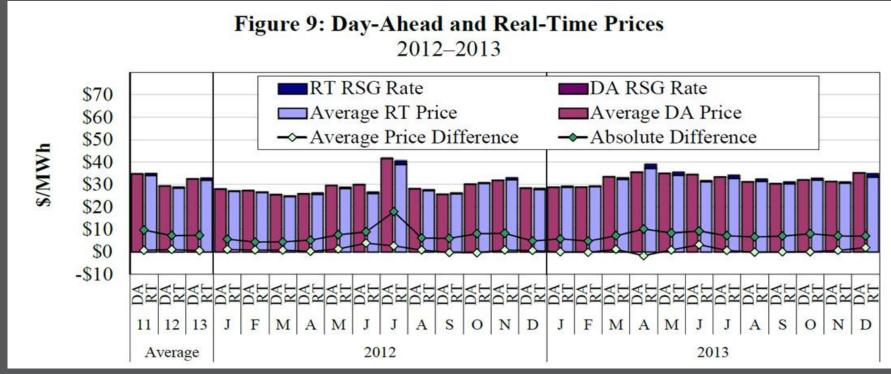


- Monetize the Value of a Resource's Flexibility
 - Determine the Resource's "Call" and "Put" value
- Incorporate into the Objective Function
- Co-optimize with the Resource's Energy and Ancillary Benefits, AND....

Proposed Methodology

READ MY LIPS...

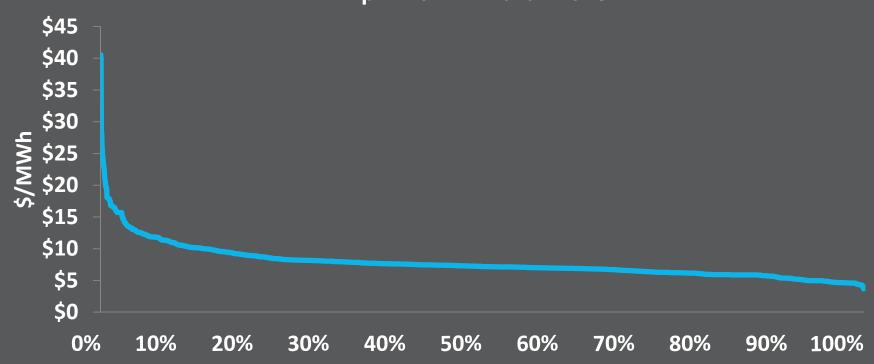
NO NEW CONSTRAINTS!


Three Characteristics of the Solution

- The More Flexibility a Resource Offers the RTO/ISO, the More Consideration that will be Given to the Resource for Commitment
- Flexible Resources will be Given the Most Consideration Where and When RT Price Volatility is Expected to Be Highest
- Only Resources Expected to Offer Cost Effective Flexibility Benefits Will Be Recommended For Commitment

Review of DA and RT Deviation: MISO

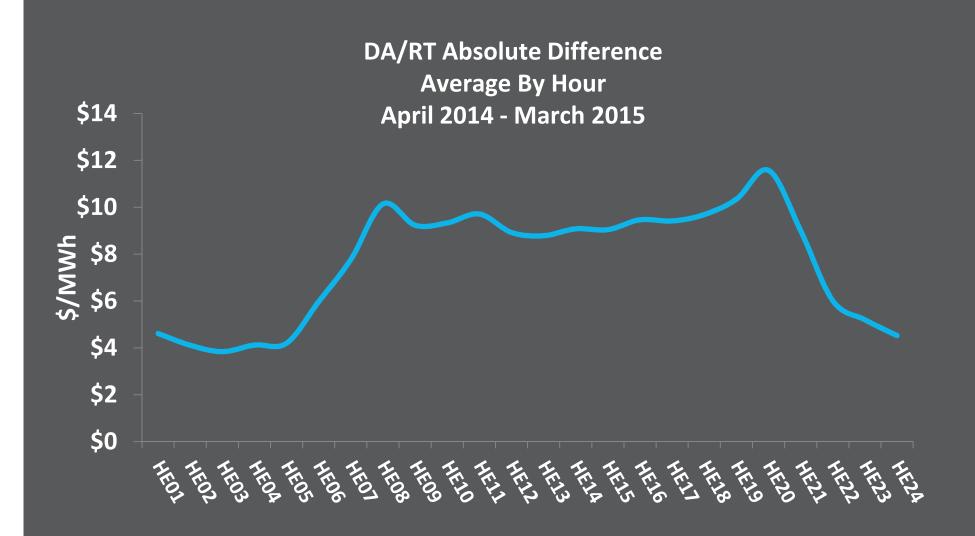
Source: Potomac Economics


"A Number of Factors, Such as Wind Output Volatility, Forced Generation or Transmission Outages, and Load Forecasting Errors, Can Cause Real-Time Prices to Be Significantly Higher or Lower Than Anticipated in the Day-Ahead"

- 2013 State of the Market Report For the MISO Electricity Markets By Potomac Economics

Review of DA & RT Deviation: MISO

DA/RT Absolute Difference
Average by Node (Ordered Highest to Lowest)
April 2014 - March 2015


Average Absolute Difference - \$7.67/MWh

Average DA Price - \$31.85/MWh; Average RT Price \$31.31/MWh

Source: MISO

Review of DA & RT Deviation: MISO

Modified Objective Function

- INCREMENTAL COST X OUTPUT
 - LESS (RESOURCE ECON MAX OUTPUT) X CALL
 PREMIUM
 - LESS (OUTPUT RESOURCE ECON MIN) X PUT
 PREMIUM

Example Flex DA/RT: Assumptions

- Resource Operating Range
 - 40 MW to 160 MW at \$35 Cost
- Assume Ramp Rate Very Fast
- Resource Does Not Qualify For Ancillaries
- RT LMP Pattern Resembles the Role of a Dice X \$5 + \$15
 - Equal Chance of \$20, \$25, \$30, \$35, \$40, and \$45
- Assume DA LMP Clears at \$32.50
 - E.g., DA and Average RT Converge at \$32.50
 - DA and RT LMPs Similar to MISO Averages of \$31.85 and \$31.31
 - Average Absolute DA/RT Deviation = \$7.50, Similar to MISO Average of \$7.67

Question: Should the Resource Clear DA?

Example Flex DA/RT – Assume 100 MWs "Flex" Clear

Resource Owner Perspective – DA Portion of Market				
Econ Max (MW)	160			
Econ Min (MW)	40			
Cost \$/MWh	\$35			
DA LMP	\$32.50			
"Flex" Cleared MW DA	100			
DA Revenue	\$3,250			
DA Cost	\$3,500			
DA Gain/(Loss)	(\$250)			

Example Flex DA/RT – Assume 100 MWs "Flex" Clear

RT LMP \$/MWh	Initial DA Position MW	Δ RT MW Dispatch Increase/ (Decrease)	Final MW Position	RTO Charge /(Credit) to Resource @ RT LMP	Resource Incremental Savings/(Cost) @ \$35/MWh	RT Δ Operating Margin to Resource
\$20	100	(60)	40	\$1,200	\$2,100	\$900
\$25	100	(60)	40	\$1,500	\$2,100	\$600
\$30	100	(60)	40	\$1,800	\$2,100	\$300
\$35	100	0	100	\$0	\$0	0
\$40	100	60	160	(\$2,400)	(\$2,100)	\$300
\$45	100	60	160	(\$2,700)	(\$2,100)	\$600
Average	100	(10)	90	(\$100)	\$350	\$450

DA Gain/(Loss)	\$(250)
Expected RT Gain/(Loss)	\$450
Expected Net Gain/(Loss)	\$200

Example Flex DA/RT

Call and Put Value - \$35 Resource						
RT LMP	Call Value	Put Value				
\$20.00	\$0.00	\$15.00				
\$25.00	\$0.00	\$10.00				
\$30.00	\$0.00	\$5.00				
\$35.00	\$0.00	\$0.00				
\$40.00	\$5.00	\$0.00				
\$45.00	\$10.00	\$0.00				
Average	\$2.50	\$5.00				

Modified Objective Function:

\$35 x DA Output – (160 - DA Output) x \$2.50 – (DA Output – 40) x \$5.00

Benefits of Flex DA/RT

- Promotes the Use of Efficient Resources
- Promotes Stable and Predictable Prices
- Promotes the Efficient Use of Resources
- Promotes Fairness:
 - Likes Treated Like
 - Unlikes Treated Differently
- Reflects Present and Future Costs
- Promotes Innovation/Response to Change
- Feasible to Implement
- Easy to Understand

Summary

- Expected Value of Resource Flexibility
 - Significant and Overlooked in Most of Today's
 Unit Commitment Methodology
 - Can Be Monetized Through Determining a Resource's "Call" and "Put" Value, and

Incorporated Directly Into the Objective Function

- The Flex DA/RT Method
 - Easy to Understand and Explain
 - Feasible, Economic, and Fair

Questions?

