# A Toolbox for Exploring AC OPF Formulations, Datasets and Solution Methods

Lisa Tang, Christopher DeMarco, Michael Ferris, Bernard Lesieutre, Byungkwon Park Contributions from: Martha Loewe

University of Wisconsin, Madison

FERC June 2015 Technical Conference Washington DC June 24, 2015

#### Power generation, transmission and distribution



- Today's electricity market encounters many complex questions, revolving around  $\sum$  Gen MW =  $\sum$  Load MW, at all times.
  - Operational, planning
  - Flexibility in face of new technologies
- Many interacting levels, multiple time-scales and agents, increasing levels of stochasticity.
- $\bullet~\mbox{Larger}$  network  $\rightarrow~\mbox{Larger}$  models

#### **Optimal Power Flow Models**

Optimal Power flow (OPF) models are at the heart of it all.

- Well researched, standard models have not changed much.
- Significant progress in decomposition and stochastic methods.
- Lacks cohesiveness in comparative literature due to different models, file formats, software, solvers.
- Core difficulty has always been solving large-scale models.

#### Consider the following data set:

- Network: 13867 buses, 18790 lines
- Generation capabilities: 1043 generators
- Non-zero Loads: 3753 nodes
- Time periods: 24 hours

How far can we take the modeling experience in a dataset of this size?

# Outline of topics

- Introduction to the OPF Toolbox
- Observations and results
  - Initial conditions for AC models
  - Solver comparisons
  - Formulation comparisons
  - D-curves
- Compiling and solving realistic large-scale datasets
  - Realistic reactive demand profile
  - Solution Process
- Stochastic Extensions
  - Stochastic unit commitment
  - Value at Risk
- Conclusions

Objective: Bridge the gap between different software, solvers, data formats, industry and academics.

#### Toolbox: A general overview

Models and testcases are open source, and written primarily in GAMS. The toolbox consists of:

- Optimization models for different OPF formulations.
- Testcase archive includes IEEE testcases, inlcuding Polish testcases (2000-3000+ buses), RTS-96 (6 files containing seasonal 24-hour demand data).
- Data management utilities for format conversion, data generation, and easy viewing output.
- Downloadable at http://www.neos-guide.org/content/optimal-power-flow
- A collection of large-scale datasets is available under Critical Energy Infrastructure Information (CEII) usage and agreement terms (not publicly available).

A B F A B F

# Why GAMS?

#### One system

Designed for modeling multiple types of problems e.g. linear, non-linear, mixed integer, stochastic.

#### Write once

Integrates multiple high-performance solvers e.g. CPLEX, CONOPT, IPOPTH, BARON, GUROBI, LINDO, PATH.

#### Flexible

Portable between different platforms, models are easily extensible, solver integration taken care of on the back-end.

#### Reusability

Models and data are easily saved and re-used in future applications. Generic GDX data interface.

## Toolbox: Standard OPF Models

Core Models:

- Direct current (DC) OPF, with and without shift matrices
- Alternating current (AC) OPF models
  - Polar Power-Voltage Formulation
  - Rectangular Power-Voltage Formulation
  - Rectangular Current-Voltage Formulation
  - Y-bus formulations
- Decoupled OPF
- Unit commitment models, both AC and DC

Stochastic Model extensions:

- Stochastic unit commitment
- Security constrained unit commitment
- Value at Risk

#### Testcases

Data files include the following information:

- Network, including power and current limits, interfaces, tap transformers
- Generator, including operational, cost, and fuel (where available)
- Active and reactive demand
- Multiple time periods (where available)
- Standard data enhancements in testcase archive include:
  - Cost function approximations: Linear, quadratic, piecewise linear
  - Demand bidding: Bid to shed load
  - Generator Capability curves (D-curves)
  - Lineflow limit approximation: Alternative approximations
  - Generator ramp-rate approximation: Alternative approximations

#### Data management utilities

- Utilities to facilitate conversions between the following three formats
  - GAMS formatted input files (.gdx)
  - Matpower formatted input files (.m)
  - ▶ PSS<sup>TM</sup>E-31 power flow raw data file (.raw)
- Compute Shift Matrix for a system
- Output data into Excel spreadsheet for easy viewing

|    | A               | В         | С   | D     | E                                                        |
|----|-----------------|-----------|-----|-------|----------------------------------------------------------|
| 1  | NAME            | TYPE      | Dim | Count | Explanatory Text                                         |
| 2  | baseMVA         | parameter | 0   | 1     |                                                          |
| з  | branchinfo      | parameter | 5   | 4249  |                                                          |
| 4  | branch s        | set       | 1   | 7     | Set of branch info selectors                             |
| 5  | branch t        | set       | 1   | 16    | Set of branch info data types                            |
| 6  | bus             | set       | 1   | 118   | Set of buses                                             |
| 7  | businfo         | parameter | 3   | 1147  |                                                          |
| 8  | bus s           | set       | 1   | 26    | Set of bus info selectors                                |
| 9  | bus t           | set       | 1   | 25    | Set of bus info data types                               |
| 10 | circuit         | set       | 1   | 2     | Indices for multiple lines between buses                 |
| 11 | demandbid       | set       | 1   | 118   | Set of buses                                             |
| 12 | demandbidinfo   | parameter | 4   | 1881  |                                                          |
| 13 | demandbidinfo 1 | parameter | 4   | 0     |                                                          |
| 14 | demandbidinfo 2 | parameter | 4   | 0     |                                                          |
| 15 | demandbidmap    | set       | 2   | 99    | Mapping of demand bid identifier to bus (demandbid, bus) |
| 16 | demandbid s     | set       | 1   | 11    | Set of demandbid info selectors                          |
| 17 | demandbid t     | set       | 1   | 3     | Set of demandbid info data types                         |
| 18 | fuelinfo        | set       | 2   | 0     |                                                          |
| 19 | fuel s          | set       | 1   | 3     | Set of fuel info selectors                               |
| 20 | fuel t          | set       | 1   | 1     | Set of fuel types                                        |
| 21 | gen             | set       | 1   | 54    | Set of generators                                        |
| 22 | geninfo         | parameter | 3   | 3151  |                                                          |

# Using the OPF toolbox



Examples of model options include:

- Time: Select which time periods(s)
- Objective: Feasibility, linear, quadratic, piecewise linear functions.
- Initial conditions: Starting point methods for AC OPF.
- D-curve: Enforce reactive power limits as D-curve circle constraints.
- Demand bidding: Incremental elastic demand bidding is considered.

# Initial conditions for AC OPF models

Within the toolbox, AC OPF models provide multiple starting point options. Some examples are listed below.

• ic=0 Midpoint

All variables initialized at the midpoint between variable bounds.

• ic=1 Random

All variables initialized using random draws between variable bounds.

• ic=2 Flat

Voltage magnitude =1, voltage angle = 0. Real, reactive power = 0.

• ic=3 Random/inferAC

Voltage magnitude & voltage angle variables are random draws. Real, reactive power are inferred using AC transmission line equations.

• ic=4 DC/inferAC

Real power and voltage angle values are initialized using a DCOPF model. Voltage magnitudes are initialized at 1 and reactive power is inferred using AC transmission line equations.

Question: What expectations would we have?

#### Comparisons between initial conditions

| Dataset     | ic=0     | ic=1     | ic=2     | ic=3     | ic=4     |
|-------------|----------|----------|----------|----------|----------|
| case14      | 0.174s   | 0.1734s  | 0.1902s  | 0.2658s  | 0.3548s  |
| case118     | 0.4822s  | 0.5572s  | 0.7646s  | infeas   | 1.1414s  |
| case300     | 1.0392s  | 1.0866s  | 1.633s   | 22.6518s | 1.2314s  |
| case2737sop | 6.5286s  | 45.3575s | 14.5468s | infeas   | 7.9692s  |
| case3120sp  | 8.9356s  | 41.009s  | 16.9014s | infeas   | 11.9338s |
| case3375wp  | 14.2058s | 93.9364s | infeas   | infeas   | 16.9038s |

Table: Comparison of initial conditions

< 3 >

#### Comparison of solvers

| Dataset                      | CONOPT  | Knitro  | ΙΡΟΡΤΗ   |
|------------------------------|---------|---------|----------|
| case118                      | 1.150s  | 0.687s  | 0.702s   |
| case300                      | 3.881s  | 1.057s  | 1.2314s  |
| case2737sop                  | 25.458s | 8.736s  | 7.9692s  |
| case3120sp                   | 56.837s | 4m 27s  | 11.9338s |
| case3375wp                   | 1m 58s  | 12.657s | 16.9038s |
| rts96_winter_wend (UC Polar) | 8m 50s  | 14.806s | 15.931s  |

Table: Comparison of Solvers

→ Ξ →

- ∢ 🗇 እ

# Comparison of OPF formulations

- Polar power-voltage formulation uses polar form of complex quantities and explicitly uses sines and cosines.
- Rectangular power-voltage formulation uses the rectangular form of complex quantities, resulting in quadratic power flow constraints.
- Rectangular current-voltage formulation models current flow instead of power on a line. Also uses rectangular form of complex quantities, but has linear current flow equations.

| Dataset                  | Polar    | Rect-PV | Rect-IV |
|--------------------------|----------|---------|---------|
| case118                  | 0.702s   | 0.757s  | 0.843s  |
| case300                  | 1.2314s  | 1.339s  | 1.369s  |
| case2737sop              | 7.9692s  | 9.483s  | 9.357s  |
| case3120sp               | 11.9338s | 14.411s | 12.269s |
| case3375wp               | 16.9038s | 15.553s | 36.412s |
| rts96_winter_wend (UCAC) | 15.931s  | 33.981s | infeas  |

Table: Comparison of OPF formulations

#### D-curve constraints

- Generator models primarily use "rectangular constraints" for active and reactive output limits.
- A more detailed model is necessary to accurately characterize generator capability curves, which are also called "D-curves".



#### Model result using D-curve constraints

| Dataset     | Tii      | me       | Objective   |             |  |
|-------------|----------|----------|-------------|-------------|--|
| Dataset     | Standard | D-curves | Standard    | D-curves    |  |
| case14      | 0.3548s  | 0.424s   | 8.08153e+03 | 8.09162e+03 |  |
| case118     | 0.734s   | 0.704s   | 1.29661e+05 | 1.29913e+05 |  |
| case300     | 1.2314s  | 0.871s   | 7.19725e+05 | 7.20176e+05 |  |
| case2737sop | 7.9692s  | 8.689    | 7.77629e+05 | 7.77649e+05 |  |
| case3120sp  | 11.9338s | 11.279s  | 2.14270e+06 | 2.15042e+06 |  |
| case3375wp  | 16.9038s | 23.046s  | 7.41203e+06 | 7.43363e+06 |  |

Table: Rectangular vs. D-curve constraints

3 1 4

# FERC: Winter and Summer datasets

Dataset Profile:

- Large scale: 13867/13981 buses and 18790/18626 lines for Winter/Summer datasets respectively.
- Datasets compiled using CEII network information and public information provided on FERC e-Library website.
- Includes information on prime movers, tap transformers, interfaces, fuel.
- Datasets are non-publicly available and part of Critical Energy Infrastructure Information (CEII).

#### Reactive demand

Question: What is the definition of a "realistic" reactive demand profile?

• Good power factor values at each load bus.

• 
$$PF = \frac{P}{S} = \frac{P}{\sqrt{P^2 + Q^2}}$$

- Given P and S limits, can provide bounds on Q
- What about when P=0?
- Feasiblity of values in the ACOPF model.
- A "reasonable" number of buses with non-zero reactive demand values.
  - L-2 or L-1 norm in objective function
- A larger ratio of withdrawals to injections in the overall system.

# Our Solution: Minimize reactive demand with respect to AC OPF constraints.

### Solution Process

When considering large scale datasets in the AC models, regular solution practices may be insufficient in finding solutions. Large-scale AC models are much harder, if not impossible to solve without good initial conditions.

#### Is the toolbox useful for a dataset this size?

Procedure 1: Feasibility methodology

1 
$$(\tilde{P}, \tilde{\theta}, U) \leftarrow$$
Solve UC\_DC --lineloss=1.055

2 
$$(P, Q, \theta, V) \leftarrow \mathsf{Solve \ polar\_acopf}( ilde{P}, ilde{ heta}, U)$$
 --ic=#

3 
$$(P, Q, \theta, V, U) \leftarrow$$
Solve UC\_AC $(\tilde{P}, \tilde{Q}, \tilde{V}, \tilde{\theta}, \tilde{U})$ 

| Dataset      | ic=0       | ic=4      | ic=7      |
|--------------|------------|-----------|-----------|
| Winter, t=20 | 14m 28.69s | 4m 27.31s | 4m 35.52s |
| Summer, t=18 | infeas     | 4m 34.74s | 3m 50.66s |

#### Handling uncertainty

Stochastic models are becoming increasingly important in today's electricity delivery landscape.

- Uncertainty stemming from wind forecasts
- Contingency planning
- Simple to model using GAMS EMP, with randvar

# Stochastic unit commitment model $\min \mathbb{E}_s[\operatorname{cost}(\mathsf{P}_s, \mathsf{U})]$ (4) $g(\mathsf{P}_s, \theta_s, U) = D_s$ (5) $h(\mathsf{P}_s, \theta_s, U) \le 0$ (6)

(3)

#### Stochastic Unit Commitment



Figure: Validation using 10000 independent samples

L. Tang (U. Wisconsin - Madison)

GAMS OPF Toolbox

June 2015 21 / 25

#### Value at Risk



- Value at Risk (VaR) and Conditional VaR (CVaR) are risk measures, designed to evaluate effects of uncertainty on the outcomes of interest.
- $\overline{VaR}_{\alpha}$  is the Value at Risk at the upper  $\alpha$  percentile.

VaR Model
$$\min \overline{VaR}_{\alpha}[cost(P_s, U)]$$
(7)and  $(5-6)$ (8)

#### Comparing Stochastic UC with VaR and CVaR



#### Figure: Difference:EV-VaR

# Figure: Difference:EV-CVaR

L. Tang (U. Wisconsin - Madison)

GAMS OPF Toolbox

June 2015 23 / 25

### Other GAMS extensions

#### equilibrium

- vi (agents can solve min/max/vi)
- bilevel (reformulate as MPEC or SOCP)
- dualvar (use multipliers from one agent as variables for another)
- Benders decomposition (available in LINDO)
- Distribution sampling (available in LINDO)
- Conversion techniques to PYOMO, AMPL

#### Conclusions

- OPF Toolbox as an analytical and solution tool:
  - Bridges the gap between work done on different software, solvers, formats.
  - Facilitates structured use and analysis of algorithms for solving large-scale and complex problems.
  - Provides access to powerful, established solvers.
  - Enables us to model complex new devices, test policy.
  - Deal with incomplete data.
- Domain knowledge/expertise is important, e.g. good starting points, solvers.
- Ongoing and future work include:
  - Exploring structured methods to solve large-scale models.
  - Incorporate/test decomposition methods.
  - Further research into stochastic models and solution methods.

A B A A B A