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Power generation, transmission and distribution

Today’s electricity market encounters many complex questions,
revolving around

∑
Gen MW =

∑
Load MW, at all times.

I Operational, planning
I Flexibility in face of new technologies

Many interacting levels, multiple time-scales and agents, increasing
levels of stochasticity.
Larger network → Larger models
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Optimal Power Flow Models

Optimal Power flow (OPF) models are at the heart of it all.

Well researched, standard models have not changed much.

Significant progress in decomposition and stochastic methods.

Lacks cohesiveness in comparative literature due to different models,
file formats, software, solvers.

Core difficulty has always been solving large-scale models.

Consider the following data set:

Network: 13867 buses, 18790 lines

Generation capabilities: 1043 generators

Non-zero Loads: 3753 nodes

Time periods: 24 hours

How far can we take the modeling experience in a dataset of this size?
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Outline of topics

Introduction to the OPF Toolbox

Observations and results
I Initial conditions for AC models
I Solver comparisons
I Formulation comparisons
I D-curves

Compiling and solving realistic large-scale datasets
I Realistic reactive demand profile
I Solution Process

Stochastic Extensions
I Stochastic unit commitment
I Value at Risk

Conclusions

Objective: Bridge the gap between different software, solvers, data
formats, industry and academics.

L. Tang (U. Wisconsin - Madison) GAMS OPF Toolbox June 2015 4 / 25



Toolbox: A general overview

Models and testcases are open source, and written primarily in GAMS.
The toolbox consists of:

Optimization models for different OPF formulations.

Testcase archive includes IEEE testcases, inlcuding Polish testcases
(2000-3000+ buses), RTS-96 (6 files containing seasonal 24-hour
demand data).

Data management utilities for format conversion, data generation,
and easy viewing output.

Downloadable at
http://www.neos-guide.org/content/optimal-power-flow

A collection of large-scale datasets is available under Critical Energy
Infrastructure Information (CEII) usage and agreement terms (not
publicly available).
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Why GAMS?

One system
Designed for modeling multiple types of problems
e.g. linear, non-linear, mixed integer, stochastic.

Write once
Integrates multiple high-performance solvers
e.g. CPLEX, CONOPT, IPOPTH, BARON, GUROBI, LINDO, PATH.

Flexible
Portable between different platforms, models are easily extensible,
solver integration taken care of on the back-end.

Reusability
Models and data are easily saved and re-used in future applications.
Generic GDX data interface.
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Toolbox: Standard OPF Models

Core Models:

Direct current (DC) OPF, with and without shift matrices

Alternating current (AC) OPF models
I Polar Power-Voltage Formulation
I Rectangular Power-Voltage Formulation
I Rectangular Current-Voltage Formulation
I Y-bus formulations

Decoupled OPF

Unit commitment models, both AC and DC

Stochastic Model extensions:

Stochastic unit commitment

Security constrained unit commitment

Value at Risk
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Testcases

Data files include the following information:

Network, including power and current limits, interfaces, tap
transformers

Generator, including operational, cost, and fuel (where available)

Active and reactive demand

Multiple time periods (where available)

Standard data enhancements in testcase archive include:

Cost function approximations: Linear, quadratic, piecewise linear

Demand bidding: Bid to shed load

Generator Capability curves (D-curves)

Lineflow limit approximation: Alternative approximations

Generator ramp-rate approximation: Alternative approximations
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Data management utilities
Utilities to facilitate conversions between the following three formats

I GAMS formatted input files (.gdx)
I Matpower formatted input files (.m)
I PSSTME-31 power flow raw data file (.raw)

Compute Shift Matrix for a system
Output data into Excel spreadsheet for easy viewing
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Using the OPF toolbox

Examples of model options include:

Time: Select which time periods(s)

Objective: Feasibility, linear, quadratic, piecewise linear functions.

Initial conditions: Starting point methods for AC OPF.

D-curve: Enforce reactive power limits as D-curve circle constraints.

Demand bidding: Incremental elastic demand bidding is considered.
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Initial conditions for AC OPF models
Within the toolbox, AC OPF models provide multiple starting point
options. Some examples are listed below.

ic=0 Midpoint
All variables initialized at the midpoint between variable bounds.

ic=1 Random
All variables initialized using random draws between variable bounds.

ic=2 Flat
Voltage magnitude =1, voltage angle = 0. Real, reactive power = 0.

ic=3 Random/inferAC
Voltage magnitude & voltage angle variables are random draws. Real,
reactive power are inferred using AC transmission line equations.

ic=4 DC/inferAC
Real power and voltage angle values are initialized using a DCOPF
model. Voltage magnitudes are initialized at 1 and reactive power is
inferred using AC transmission line equations.

Question: What expectations would we have?
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Comparisons between initial conditions

Dataset ic=0 ic=1 ic=2 ic=3 ic=4

case14 0.174s 0.1734s 0.1902s 0.2658s 0.3548s
case118 0.4822s 0.5572s 0.7646s infeas 1.1414s
case300 1.0392s 1.0866s 1.633s 22.6518s 1.2314s

case2737sop 6.5286s 45.3575s 14.5468s infeas 7.9692s
case3120sp 8.9356s 41.009s 16.9014s infeas 11.9338s
case3375wp 14.2058s 93.9364s infeas infeas 16.9038s

Table: Comparison of initial conditions
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Comparison of solvers

Dataset CONOPT Knitro IPOPTH

case118 1.150s 0.687s 0.702s
case300 3.881s 1.057s 1.2314s

case2737sop 25.458s 8.736s 7.9692s
case3120sp 56.837s 4m 27s 11.9338s
case3375wp 1m 58s 12.657s 16.9038s

rts96 winter wend (UC Polar) 8m 50s 14.806s 15.931s

Table: Comparison of Solvers
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Comparison of OPF formulations
Polar power-voltage formulation uses polar form of complex quantities
and explicitly uses sines and cosines.
Rectangular power-voltage formulation uses the rectangular form of
complex quantities, resulting in quadratic power flow constraints.
Rectangular current-voltage formulation models current flow instead
of power on a line. Also uses rectangular form of complex quantities,
but has linear current flow equations.

Dataset Polar Rect-PV Rect-IV

case118 0.702s 0.757s 0.843s
case300 1.2314s 1.339s 1.369s

case2737sop 7.9692s 9.483s 9.357s
case3120sp 11.9338s 14.411s 12.269s
case3375wp 16.9038s 15.553s 36.412s

rts96 winter wend (UCAC) 15.931s 33.981s infeas

Table: Comparison of OPF formulations
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D-curve constraints

Generator models primarily use “rectangular constraints” for active
and reactive output limits.

A more detailed model is necessary to accurately characterize
generator capability curves, which are also called “D-curves”.
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Model result using D-curve constraints

Dataset
Time Objective

Standard D-curves Standard D-curves

case14 0.3548s 0.424s 8.08153e+03 8.09162e+03
case118 0.734s 0.704s 1.29661e+05 1.29913e+05
case300 1.2314s 0.871s 7.19725e+05 7.20176e+05

case2737sop 7.9692s 8.689 7.77629e+05 7.77649e+05
case3120sp 11.9338s 11.279s 2.14270e+06 2.15042e+06
case3375wp 16.9038s 23.046s 7.41203e+06 7.43363e+06

Table: Rectangular vs. D-curve constraints
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FERC: Winter and Summer datasets

Dataset Profile:

Large scale: 13867/13981 buses and 18790/18626 lines for
Winter/Summer datasets respectively.

Datasets compiled using CEII network information and public
information provided on FERC e-Library website.

Includes information on prime movers, tap transformers, interfaces,
fuel.

Datasets are non-publicly available and part of Critical Energy
Infrastructure Information (CEII).
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Reactive demand

Question: What is the definition of a “realistic” reactive demand profile?

Good power factor values at each load bus.
I PF = P

S = P√
P2+Q2

I Given P and S limits, can provide bounds on Q
I What about when P=0?

Feasiblity of values in the ACOPF model.

A “reasonable” number of buses with non-zero reactive demand
values.

I L-2 or L-1 norm in objective function

A larger ratio of withdrawals to injections in the overall system.

Our Solution: Minimize reactive demand with respect to AC OPF
constraints.
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Solution Process

When considering large scale datasets in the AC models, regular solution
practices may be insufficient in finding solutions. Large-scale AC models
are much harder, if not impossible to solve without good initial conditions.

Is the toolbox useful for a dataset this size?

Procedure 1: Feasibility methodology

1 (P̃, θ̃,U)← Solve UC DC --lineloss=1.055

2 (P,Q, θ,V )← Solve polar acopf(P̃, θ̃,U) --ic=#

3 (P,Q, θ,V ,U)← Solve UC AC(P̃, Q̃, Ṽ , θ̃, Ũ)

Dataset ic=0 ic=4 ic=7

Winter, t=20 14m 28.69s 4m 27.31s 4m 35.52s
Summer, t=18 infeas 4m 34.74s 3m 50.66s
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Handling uncertainty

Stochastic models are becoming increasingly important in today’s
electricity delivery landscape.

Uncertainty stemming from wind forecasts

Contingency planning

Simple to model using GAMS EMP, with randvar

Stochastic unit commitment model

minEs [cost(Ps, U)] (4)

g(Ps , θs ,U) = Ds (5)

h(Ps , θs ,U) ≤ 0 (6)
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Stochastic Unit Commitment
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Figure: Validation using 10000 independent samples
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Value at Risk

0 2 4 6 8

CVaRVaRMean

Value at Risk (VaR) and Conditional VaR (CVaR) are risk measures,
designed to evaluate effects of uncertainty on the outcomes of
interest.
VaRα is the Value at Risk at the upper α percentile.

VaR Model

minVaRα[cost(Ps, U)] (7)

and (5− 6) (8)
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Comparing Stochastic UC with VaR and CVaR
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Figure: Difference:EV-VaR
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CVaR Solution
Mean = 515 189.3
VaR = 544 568.85
CVaR = 582 425.55

Figure: Difference:EV-CVaR
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Other GAMS extensions

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC or SOCP)

dualvar (use multipliers from one agent as variables for another)

Benders decomposition (available in LINDO)

Distribution sampling (available in LINDO)

Conversion techniques to PYOMO, AMPL
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Conclusions

OPF Toolbox as an analytical and solution tool:
I Bridges the gap between work done on different software, solvers,

formats.
I Facilitates structured use and analysis of algorithms for solving

large-scale and complex problems.
I Provides access to powerful, established solvers.
I Enables us to model complex new devices, test policy.
I Deal with incomplete data.

Domain knowledge/expertise is important, e.g. good starting points,
solvers.

Ongoing and future work include:
I Exploring structured methods to solve large-scale models.
I Incorporate/test decomposition methods.
I Further research into stochastic models and solution methods.
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