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The co-optimization challenge

Revenue streams for battery storage
» Frequency regulation
» Energy arbitrage

• In front of the meter (what we have done)
• Behind the meter

– Customer baseline load

» Peak shifting
• Utility – flattening the load curve
• Customer perspective – demand charge management

– Commercial scale

» Customer baseline load
• Behind the meter

» Power factor correction
• Similar to voltage regulation



The co-optimization challenge

Revenue streams for battery storage
» Capacity market

• Backup; 8 hours out of a year;
• Historically summer peaks, but can happen any time
• Likely to be a function of temperature (high/medium/low)

» Spinning reserve
• Hourly market; day-ahead bidding, clears that day; dispatched 

for 15 minutes; dispatched when a reserve event occurs; zonal-
based

» Power factor correction
» Voltage regulation market (emerging)

• Signal will specify watts (real) vs. var (reactive) power.

» Life cycle management
» Emerging markets for variability of solar



The co-optimization challenge
Pure frequency regulation
» Follow the RegD signal from the ISO
» Penalties for noncompliance

• At PJM, these are computed hourly
» Noncompliance is due purely to engineering limitations

Energy arbitrage
» Simple control law
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The co-optimization challenge

Optimizing both at the same time
» We may wish to deviate from the PJM signal, trading 

off loss of FR revenue now to make more money:
• By selling into a high LMP
• By holding (or purchasing) energy to use later.

» Co-optimization requires making cost/revenue tradeoffs
• Now…
• … or in the future

» This requires that we formulate the problem as a cost 
minimization problem over time.

» How to solve?



The co-optimization challenge

Strategy:
» Formulate problem as a cost-minimization problem 

over time
» Solve as a Markov decision process

Challenge
» We have to handle multiple time (and spatial) scales:

• Frequency regulation, with decisions made every 2-4 seconds
• Hourly planning in 5-minute increments to respond to 

variations in LMPs, with hourly compliance evaluations
• Daily planning over the grid, handling both daily cycles and 

grid congestion.

» Problem:
• 21,600 time periods (4-second increments over a day)
• 4 dimensional state variable to cover all periods



A multiscale decomposition strategy

We break the horizon into three time scales

24 time steps

12 time steps
Economic basepointE

tx 

75 time steps
Frequency regulationD

tx 



The co-optimization challenge

Algorithmic strategy:
» We will use SMART-Storage to solve the grid level 

storage problem (developed by Daniel Salas)
• 5-minute increments over an entire day
• Can handle single storage, or hundreds of batteries
• Simultaneously models the grid and economic dispatch

» We then solve the hourly problem
• 5-minute increments
• Use SMART-Storage to capture the value of energy in the 

battery at the end of each hour 
• Hourly model captures compliance signal in the state variablae

» Finally we solve the frequency regulation problem
• 5-minute horizon in 4-second increments
• Hourly problem gives the value of energy storage at the end of 

5-minutes
• Captures LMP in the state variable



An energy storage problem

Consider a basic energy storage problem:



A storage problem

Solve using Bellman’s optimality equation
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Approximate dynamic programming

Optimizing grid level storage over 24 hours
» We approximate the value of energy in storage:
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Approximate dynamic programming

Optimizing grid level storage over 24 hours
» We update the piecewise linear value functions by 

computing estimates of slopes using a backward pass:

» The cost along the marginal path is the derivative of the 
simulation with respect to the flow perturbation.

R



Approximate dynamic programming

Derivatives are used to estimate a piecewise linear 
approximation
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Approximate dynamic programming
Benchmarking against optimality on a stochastic model
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Locational marginal prices on the gridLMPs – Locational marginal prices

$977/MW !!!
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Grid level storage Imagine 25 large storage devices spread around the PJM grid:
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Grid level storage Imagine 25 large storage devices spread around the PJM grid:
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Grid level storage control
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Grid level storage control
Monday



Time :05 :10 :15 :20
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Grid level storage control
Monday



Time :05 :10 :15 :20
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Grid level storage control
Monday



Time :05 :10 :15 :20



Grid level storage control

ADP (blue) vs. LP optimal (black)
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Grid level storage control

Without storage



Grid level storage control

With storage



Heterogeneous fleets of batteries



Heterogeneous fleets of batteries

A tale of two batteries
» Ultracapacitor – High power, high efficiency, low capacity
» Lead acid – Lower power, lower efficiency, high capacity

Lead acid

Ultra capacitor



Co-optimizing multiple revenue streams
Each time scale is addressing different issues, with 
different state variables
» Daily model may need to recognize that solar energy 

during low load periods (in winter) are needed during 
higher usage periods in the evening.

» Hourly model needs to monitor PJM compliance for 
frequency regulation, while optimizing buying and 
selling energy.

» Every 2-seconds, need to balance frequency regulation 
compliance against short-term revenue opportunities 
and longer term energy shifting or battery arbitrage.

How do we make decisions at the 2-second and 5-
minute scales “see” hours into the future?



Co-optimizing multiple revenue streams
Solution strategy I – Solve as a single optimization model
» 4-second increments over a day = 21,600 time periods
» State variables required:

• Energy in the battery
• Regulation price
• Compliance metric
• Electricity price
• Load

» 21,600 time periods and 4-dimensional state variable!
Solution strategy II – Three models, three scales
» Daily, hourly increments

• Tracks hour-of-day patterns, 
» Hourly model, 5-minute increments

• Tracks PJM frequency regulation compliance
» 5-minute model, 4-second increments

• Balances frequency regulation signal against buying/selling electricity 
now and holding for the future.



A multiscale model

The challenge of time scales:

24 time steps

12 time steps
Economic basepointE

tx 

75 time steps
Frequency regulationD

tx 



Handling multiple time scales
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Handling multiple time scales

0 .  .  .1 2 33 4 23 24
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Daily (hourly increments)

Hourly (5-min. increments)



 1( ) min ( , ) (
tt x t t tV S C S x V S  X 

Handling multiple time scales

0 .  .  .1 2 33 4 23 24

0 5 10 15 20 55 60. . .

Daily (hourly increments)

Hourly (5-min. increments)  1( ) min ( , ) (
tt x t t tV S C S x V S  X 

0 2 4 6 8 298 300. . .
5 min (2-sec. increments)



Frequency Regulation
 PJM sends charge/discharge signals to the generators every 

2 seconds to smooth out fluctuations in supply/demand 
balance.
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Optimizing a multi-dimensional problem

 

76 76 76 76Step 0:  Initialize ( ) ( ) for all states.
Step 1:  Step backward 75 (5 mins),74,73,...,1
     Step 2: Loop over = , ,   (three loops, 10 million states)
          Step 3: Loop 

FR FR EB EB

t t t t

V S V S
t

S R G D





 

   Re
1 1

over storage decisions (21 actions - increments of .05MW)
               Step 4: Take the expectation over the RegD signal  (21)

               Compute ( , ) ( , )  , ,

t

t

FR M
t t t t t t t t t

x
d D

Q S x C S x V S S x D d P 





  

*

1

1

( )

               End step 4;
          End Step 3;
          Find ( ) max ( , )

          Store ( ) arg max ( , ).  (This is our policy)

     End Step 2;
End Step 1;

t

t

gD

d

FR FR
t t x t t t

FR
t t x t t t

d

V S Q S x

X S Q S x









The frequency regulation DP



Computational challenges

Brute force solution of full MDP is intractable
» At the lowest (FR) level:

• Value functions have 10 million states
• These have to be computed for each LMP (we clustered 

observed LMPs into 7 levels)
• Have to be computed and stored for 21,000 time periods.
• ~12.8 terabytes of data

» Singular value decomposition (SVD)
• We can represent a matrix M as:

  TM U V 

900 (600 20) 

900 10

10 10

10 (600 20) 

130,000 elements

10 million elements



Computational challenges

Error in low-rank approximation



Simulations
24 hour simulation
» Training:

• 60 sample paths for LMPs
• 20 sample paths for RegD signal

» Testing
• 10 sample paths for LMPs
• Fixed RegD price over a range
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Annual net revenue increase from Co-Opt;      Round trip efficiency=.81



Economic analysis

RegD = $100

24 hours



Economic analysis

RegD = $20

24 hours



Economic analysis

RegD = $100

24 hours



Economic analysis

RegD = $20

24 hours



Economic analysis

RegD = $100

24 hours



Economic analysis

RegD = $20

24 hours



Behaviors

RegD = $100

24 hours



Behaviors

RegD = $20

24 hours



Behaviors

RegD = $10

24 hours



Behaviors

RegD = $5

24 hours



Behaviors

RegD = $0

24 hours



Economic analysis
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Economic analysis

High revenue LMP paths in bold



Economic analysis



Conclusions

The algorithm:
» Produces very near-optimal optimal policy over all 

revenue streams and time scales
» Balances RegD penalties against other revenue streams
» The algorithm can run in real-time (e.g. making RegD

decisions every 2 seconds)
» But there is considerable offline computation (which 

we are working to reduce)

The benefits
» In initial studies, value of co-optimization is small

• Frequency regulation revenues still dominate

» We are starting the process of optimizing over a wide 
range of revenue streams




