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• Power grid operations have shifted to uncertainty-

aware decision-making frameworks
 Scenario/interval-based optimization

 Robust optimization 

 Chance constraints

 Real-life OPF/UC applications: China, Switzerland, Russia (hydro+nucs)

• Electricity markets are largely lagging far behind
 No consensus contract design

 Uncertainty factors are not explicitly internalized the price formation process

 No systematic framework to map uncertainty to a given network

 “Stochasticity” concerns: What does the “stochastic” pay off actually mean? How to resolve the risk 

versus expectation dilemma? And how to explain it to a generation owners? 

 Lack of data or format dependencies on third-party providers (e.g. NOAA)

 Scalability concerns
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Overview: Why Chance Constraints?

Chance constraints can be just the right framework to address the key issues



• Feasibility and effectiveness of chance constraints 

have been well-established
 Demonstration of cost-efficient and tractable reformulation (Bienstock et al, 2014) applied to a 

network with a 2,000+ nodes with location-specific treatment of uncertainty

 Discriminatory treatment of small and large constraint violations (Roald et al, 2015; Dvorkin et al, 

2017) for non-affine control policies and separating primary, secondary, and tertiary reserve needs

 Scalable extensions to distributionally robust formulations, both algorithmically (Lubin, 2016) and 

via exact, or almost, convex reformulations (Xie et al, 2018)

 Enable a “complete” electricity market design via a linearization of ac power flows (Lubin, 2018) or 

a convex relaxation (Halilbasic et al, 2018)

 Support contingency-constrained formulations (Roald et al, 2016)
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Overview: Why Chance Constraints?

Chance constraints ensure high performance, modeling fidelity and compatibility 

with legacy market designs

• Can leverage existing results
 The exact SOCP reformulation is convex

 Results obtained using the LP duality (deterministic markets) can be extended to a more general 

SOCP case (with some modifications)

 SOCP duality ensures compatibility with legacy electricity market designs (important for the 

successful transition; Kuhn, 1962) 
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This presentation

• Contract design & market equilibrium with chance 

constraints 
 Single node case

 Contract design with chance constraints

 Market equilibrium under chance constraints

• Extensions to network-specific pricing with chance 

constraints
 How to enforce the chance-constrained apparent power flow limits?

 Implications on pricing

 Contract design feasibility: is possible with the single-node contract? 

• Not in this presentation
 Explicit treatment of non-convexities

 Can be internalized using previous results for deterministic markets (using a connection between the 

LP – SOCP duality)
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Contract Design with Chance Constraints

Electricity 

Market

Gen1

Gen k

Gen 

𝑁𝑘

…

…
Standard offers

Standard outcomes

• Contract design = {Standard offers, Standard outcomes}

• Standard offers include energy and reserve offers 

(capacity, price)

• Standard outcomes include cleared offers and prices
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Contract Design with Chance Constraints

• Chance-constrained, single-node, single-period unit 

commitment problem 

Incremental 

cost

Fixed cost

Affine control with the power 

output 𝑝𝑘, participation factor 𝛼𝑘
and system-wide uncertainty 𝛀

 Factors in the cost of real-time output: 𝒑𝑘 = 𝑝𝑘 − 𝛼𝑘𝛀

 Real-time system-wide uncertainty: 𝛀 ∼ 𝑁(0, 𝜎2 )

 Affine response and Gaussian, zero-mean assumptions are for the sake of convenience; can be 

revisited 
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Contract Design with Chance Constraints

• Chance-constrained, single-node, single-period unit 

commitment problem 

System-wide power balance constraint 

(deterministic) 

Output limits on generators 

(deterministic) 

Chance constrained output limits on generators

Constraint on the system-wide response



8

Contract Design with Chance Constraints

• Chance-constrained, single-node, single-period unit 

commitment problem 

This problem can be reduced to an LP 

(using the zero-mean assumption + 

fixing binary decisions)
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Contract Design with Chance Constraints

• Deterministic LP for the chance-constrained, single-

node, single-period unit commitment problem 

Φ𝜖
−1 can be scaled to represent non-

Gaussian distribution

 This LP can be then decomposed into “generators” problem (O’Neil, 2005)

{𝑙0, 𝑏0, 𝑤𝑘} define the compensation of each 

generator for the power price, ramp power 

price, and commitment compensation
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Contract Design with Chance Constraints

Electricity 
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{𝑙0, 𝑏0, 𝑤𝑘}

 Contract design

Let 𝑇𝑘 be a contract between the power market operator and generator 𝑘 with the following terms: (1) 

Generator’s  𝑘 decision is given by {𝑝𝑘, 𝛼𝑘, 𝑧𝑘}, and (2) Generator k receives an amount from the power 

market operator equal to the following payment function: 𝑙0𝑝𝑘 + 𝑏0𝛼𝑘 + 𝑤𝑘𝑧𝑘 .

{𝑝𝑘, 𝛼𝑘, 𝑧𝑘}

 This contract design leads to a stable market equilibrium
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Market Equilibrium with Chance Constraints

Electricity 
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{𝑙0, 𝑏0, 𝑤𝑘}

 Market equilibrium must satisfy two conditions:

{𝑝𝑘, 𝛼𝑘, 𝑧𝑘}
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Market Equilibrium with Chance Constraints

 Our proof exploits LP duality (as in O’Neil, 2005)

 Still it works for a single-node case, transmission constraints need to be accounted for additionally

 See our proof in Kuang, 2018.
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Market Equilibrium with Chance Constraints

 The price formation process adequately reflects uncertainty (𝜖, 𝜎 ) 

 Externalities (𝜖, 𝜎 ) can be related to power grid operations and have well-defined temporal and spatial 

interpretations (important for transmission-constrained extensions)

 Provides a high customization level for the assumptions on uncertainties, but does not increase 

computational complexity

 Has connections to the existing practice

• One bid, no multiple bids for multiple scenarios

• Easy interpretation + deterministic dc network constraints can be factored in straightforwardly
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Chance-Constrained Network-Constrained Pricing

• How to enforce power flow constraints?

• AC power flows (e.g. voltage + reactive power limits are 

accounted for)

• Apparent power limits → no exact reformulation

• Voltage limits → reformulated into linear deterministic 

constraints

• A few modeling choices:

• Power flow linearization around an given operating point

(an feasible AC power flow solution exists)

• Affine response policies

• Zero-mean, Gaussian uncertainty

• Single-period optimization
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Power Flow Linearization

• AC power flow equations can be linearized or relaxed

• Linearization is based on the Taylor’s approximation

• Can be solved sequentially to improve accuracy of the 

approximated solution 

• Even linearized AC power flow equations are difficult due 

to the quadratic dependency on uncertainty (𝝎) 

Active flow Reactive 

flow
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Inner Approximation

• Inner approximation of the quadratic dependency (Lubin 

et al, 2018)

Approximate absolute values with:
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Chance-Constrained AC Optimal Power Flow 

• Inner approximation of the quadratic dependency (Lubin 

et al, 2018) works quite well

• However, the resulting problem is not an LP  anymore due 

to the approximation:
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Chance-Constrained AC Optimal Power Flow 

• However, the resulting problem is not an LP  anymore due 

to the approximation:

• However the program is still convex and the convex 

duality can be used in this case

• The same contract design can be used

• New proof is work in progress
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Summary

• Chance constraints offer a great deal of modeling 

flexibility at an acceptable computational cost

• Can be used for pricing under uncertainty
 At least, for the single-node case or for the transmission-constrained case with DC 

assumptions or with deterministic power flow limit

 Explicit consideration of uncertainty & risk tolerance on the price formation process 

• Can be built on existing practices

• More info:
 M. Lubin, Y. Dvorkin, and L. Roald, “Chance Constraints for Improving the Security of 

AC Optimal Power Flow,” under review, 2018. Available at: 

https://arxiv.org/abs/1803.08754

 X. Kuang, Y. Dvorkin, A. J. Lamadrid, M. Ortega-Vazquez, and L. Zuluaga, “Pricing 

Chance Constraints in Electricity Markets,”  IEEE Transactions on Power Systems, 

early access,  2018.

https://arxiv.org/abs/1803.08754
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