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 Power grid operations have shifted to uncertainty-
aware decision-making frameworks

= Scenariof/interval-based optimization

= Robust optimization

= Chance constraints

= Real-life OPF/UC applications: China, Switzerland, Russia (hydro+nucs)

» Electricity markets are largely lagging far behind

= No consensus contract design

= Uncertainty factors are not explicitly internalized the price formation process

= No systematic framework to map uncertainty to a given network

= “Stochasticity” concerns: What does the “stochastic” pay off actually mean? How to resolve the risk
versus expectation dilemma? And how to explain it to a generation owners?

= Lack of data or format dependencies on third-party providers (e.g. NOAA)

Scalability concerns

Chance constraints can be just the right framework to address the key issues
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» Feasibility and effectiveness of chance constraints
have been well-established

= Demonstration of cost-efficient and tractable reformulation (Bienstock et al, 2014) applied to a
network with a 2,000+ nodes with location-specific treatment of uncertainty

= Discriminatory treatment of small and large constraint violations (Roald et al, 2015; Dvorkin et al,
2017) for non-affine control policies and separating primary, secondary, and tertiary reserve needs

= Scalable extensions to distributionally robust formulations, both algorithmically (Lubin, 2016) and
via exact, or almost, convex reformulations (Xie et al, 2018)

= Enable a “complete” electricity market design via a linearization of ac power flows (Lubin, 2018) or
a convex relaxation (Halilbasic et al, 2018)

= Support contingency-constrained formulations (Roald et al, 2016)

« Can leverage existing results

= The exact SOCP reformulation is convex

= Results obtained using the LP duality (deterministic markets) can be extended to a more general
SOCP case (with some modifications)

= SOCP duality ensures compatibility with legacy electricity market designs (important for the
successful transition; Kuhn, 1962)

Chance constraints ensure high performance, modeling fidelity and compatibility 3
with legacy market designs
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« Contract design & market equilibrium with chance
constraints

= Single node case
= Contract design with chance constraints
= Market equilibrium under chance constraints

» Extensions to network-specific pricing with chance
constraints

= How to enforce the chance-constrained apparent power flow limits?
= Implications on pricing
= Contract design feasibility: is possible with the single-node contract?

* Not in this presentation

= Explicit treatment of non-convexities
= Can be internalized using previous results for deterministic markets (using a connection between the
LP — SOCP duality)
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Gen k Standard offers n Electricity

Market

» Standard outcomes

« Contract design = {Standard offers, Standard outcomes}

« Standard offers include energy and reserve offers
(capacity, price)

« Standard outcomes include cleared offers and prices

5
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 Chance-constrained, single-node, single-period unit
commitment problem

min [E ch(pk—akﬂ)-l-szk
k S

Incremental Fixed cost
cost

Affine control with the power
output py, participation factor a;,
and system-wide uncertainty Q

= Factors in the cost of real-time output: p, = pr — @, Q
* Real-time system-wide uncertainty: @ ~ N(0,5?)

= Affine response and Gaussian, zero-mean assumptions are for the sake of convenience; can be
revisited
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 Chance-constrained, single-node, single-period unit
commitment problem

min [E (Z cr(pr — apS2) + szk)

k
S.L. Zpk: + W“f =D, System-wide power balance constraint
k (deterministic)
PRz < pp < P, Yk, Output limits on generators

(deterministic)
P (pk — akﬂ S P?axzk) Z 1 - €, Vka

Chance constrained output limits on generators
P (pr — Q> piiz) > 1—¢,  VE,

E ap =1, Constraint on the system-wide response
k

ar >0,z € {0, 1}, vk,
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 Chance-constrained, single-node, single-period unit
commitment problem

min [E (Z cr(pr — apS2) + szk)

k

.. Zpk +w/ =D,
k

min max \vx k
] b

Pz < pr S pp Tt 2k,

o < pMax o\ 5 1 This problem can be reduced to an LP
P (pk St < py Zk) 21—¢ Vi (CCUCP) (using the zero-mean assumption +

: fixing binary decisions
P(pr— x> piiz) > 1—c, Wk, ing binary deeisions)

Zak - 17
X

ar >0,z € {0, 1}, vk,
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* Deterministic LP for the chance-constrained, single-
node, single-period unit commitment problem

min Z a.pe + frzn

A.
st. > pe+W/ =D,
ke

min _— @1 can be scaled to represent non-

-1 -1 .
P 2 — P oo Spr <SPz + P oo, VK, Gaussian distribution
k
ap >0, Vi,

(CCUCP;p)

= This LP can be then decomposed into “generators” problem (O’Neil, 2005)

<«—— {ly, by, wy} define the compensation of each
generator for the power price, ramp power

St PRtz — dloay < pr < PRz 4+ O Loy, price, and commitment compensation

min  eppr + frzr — lopr — by, — w2z

(833 Z U, (CCUCP]’{IP)
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!a )Z ..
Gen k Pre @ 2ed .|  Electricity

Market

> {lo, bo, Wi}

= Contract design

Let T, be a contract between the power market operator and generator k with the following terms: (1)
Generator’'s k decision is given by {py, ax, z,}, and (2) Generator k receives an amount from the power
market operator equal to the following payment function: lyp; + boay + wy 2.

= This contract design leads to a stable market equilibrium 10
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Gen k (Pro o 2} | Electricity

Market

> {lo, bo, Wi }

= Market equilibrium must satisfy two conditions:
Z o + W/ =D,
k

Z ap =1
ke

11
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Theorem 1: Let {p;,a;,z}} for all k be an optimal so-
lution of (CCUCP) (or equivalently, of (CCUCP;p)), and let
{5, 85, {w;; Vk}} for all k be an optimal solution of the dual LP
of (CCUCPyp (2*)). Then the prices Iy = A, by = 3, wy = wj
for all £, and the decisions pﬁc = Dr., oz;C = a;, and zjf = z; for
all £ represent a robust competitive equilibrium.

= Our proof exploits LP duality (as in O’Neil, 2005)
= Still it works for a single-node case, transmission constraints need to be accounted for additionally
= See our proof in Kuang, 2018.

W/ =200, D =7000 =80 W/ =200, D = 700 o = 80

3500 6
= —o Stochastic o | 8 o Stochastic
é 3000 —+Deterministic|  _ _ y E 54 + D(\t.m'miuisfic-_
= 8
£ 2500 24
= :

2000 3

0.8 0.85 0.9 0.95 1 0.8 0.85 0.9 0.95 1
l1—e¢ 1—¢
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W# =200, D =700 o = 80 W/ =200, D =700 o = 80
6
) o Stochastic el 8 o Stochastic
éj 3000t —f—Determinibtic PR Di 5 —+—Deterministic e
— = ®
£ 2500 2l
= 5 b
000 : : : 3 . : X
0.8 0.85 0.9 0.95 1 0.8 0.85 0.9 0.95 1

i 1—e¢ 1—e¢
W =200, D =700 0 = 40 Wi =200, D =700c =40
6 ‘ .

3500 —
= o Stochastic L —o Slochns.l_u_: _
8 3000 |~ DPeterministic . 534 5 ——Deterministic |
— -
< b
= 25007 § 4+
= 5

2000 - . ‘ 3 . : .

0.8 0.85 0.9 0.95 1 0.8 0.85 0.9 0.95 1
I—e 1—ce¢

= The price formation process adequately reflects uncertainty (¢, )
= Externalities (¢,0 ) can be related to power grid operations and have well-defined temporal and spatial
interpretations (important for transmission-constrained extensions)
= Provides a high customization level for the assumptions on uncertainties, but does not increase
computational complexity
= Has connections to the existing practice
+ One bid, no multiple bids for multiple scenarios 13
« Easy interpretation + deterministic dc network constraints can be factored in straightforwardly
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 How to enforce power flow constraints?
» AC power flows (e.g. voltage + reactive power limits are
accounted for)
» Apparent power limits — no exact reformulation
 Voltage limits — reformulated into linear deterministic
constraints
» A few modeling choices:
» Power flow linearization around an given operating point
(an feasible AC power flow solution exists)
« Affine response policies
« Zero-mean, Gaussian uncertainty
 Single-period optimization

14
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« AC power flow equations can be linearized or relaxed

7 (v,0) = vivj |Gij cos(0; — 0;) + Bijsin(6; — 6;)]
% (v,0) = viv, [Gij sin(0; — 0;) — B;; cos(0; — 6'3-)},
 Linearization is based on the Taylor’s approximation
» Can be solved sequentially to improve accuracy of the
approximated solution
» Even linearized AC power flow equations are difficult due

to the quadratic dependency on uncertainty (w)

P((ff(w)* + (ffw))* < (s77%7)*) 2 1 — e

]

Active flow Reactive 15
flow
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* Inner approximation of the quadratic dependency (Lubin
et al, 2018)

P((/5 (@) + (f4(@)* < (571 > 1 - ¢

1] ] L]

P(f5 () < t5;) =

€1 ..
P(FL ) <t) > 1- L vije
(t?j)z + (téj) < (si7* *)?,Vij e L,

€r ..
1-Lvijer
g 't

Approximate absolute values with:

~t; = £5(0) < @71 (%) Stdev]fj; ()
16
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OF ENGINEERING

* Inner approximation of the quadratic dependency (Lubin
et al, 2018) works quite well

120 T T T
| I Det. (uniform) [ Det. (reserve) [__JAC CC-OPF (uniform) [-Z] AC CC-OPF (Table I)

-

—_

o
T

100

90

80

Expected ex-post cost, 10° $

70

e=10" =102 =103

« However, the resulting problem is not an LP anymore due
to the approximation:

() + () < (si3°")*,Vij € L,

17
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 However, the resulting problem is not an LP anymore due
to the approximation:

(8" + ()" < (si5*")*,Vij € L,
« However the program is still convex and the convex
duality can be used in this case
« The same contract design can be used
* New proof is work in progress

18
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« Chance constraints offer a great deal of modeling
flexibility at an acceptable computational cost
« Can be used for pricing under uncertainty

= At least, for the single-node case or for the transmission-constrained case with DC
assumptions or with deterministic power flow limit
= Explicit consideration of uncertainty & risk tolerance on the price formation process

« Can be built on existing practices

 More info:

= M. Lubin, Y. Dvorkin, and L. Roald, “Chance Constraints for Improving the Security of
AC Optimal Power Flow,” under review, 2018. Available at:
https://arxiv.org/abs/1803.08754

= X. Kuang, Y. Dvorkin, A. J. Lamadrid, M. Ortega-Vazquez, and L. Zuluaga, “Pricing
Chance Constraints in Electricity Markets,” IEEE Transactions on Power Systems,
early access, 2018.
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