

TOWARDS A PRICE-BASED DISPATCH FORMULATION IN RTO

How can a nodal-branch price equality constraint help?

Shangyou Hao, Ph.D. PA Consulting

Content

- Background and Inspirations
- Development of New Formulation
- Examples
- Applications
- Further Research

Fundamentals of Markets Optimization Software

Objective

- Surplus
- Payment
- Costs

Controls

- Resources
- Load
- [Prices]

Constraints

- Power flow
- Transmission
- Resources
- [Prices]

Data & Parameter

- Network
- Contingency
- Rules
- FERC questions in this Docket

Solution

- LR
- MIP
- SQP
- Others

Applications

- UC
- Dispatch
- Pricing
- Operator vs. self schedule
- Capacity market
- CRR

Background and Inspirations

Search for Better Software?

- Convex hull and payment minimization
- Alternatives (APPA, EEI, Litvinov, etc.)
- This presentation is about a new formulation
 - Not a solution method
 - New constraint (nodal-branch price equality constraint) and decision variables
 - Discussions of new ways of applying the formulation
 - Inspired by dual solution and ELMP, with a transmission network

Background and Inspiration

Background

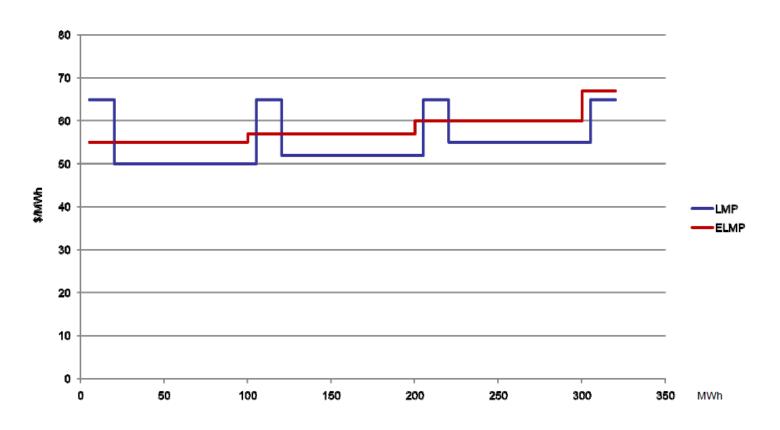
- FERC's reports and related proceedings: importance of price formation
- Pricing has been based a principle of "marginal cost of load": many issues under non-convexities
- Alternatives: Non-intuitive pricing

Inspirations

- Payment minimization and self-commitment
- Dual solution, but with locational aspects of LMP
- Previous studies

ELMP* (Convex Hull) and LMP

ELMP and LMP



*Paul Gribik et al. of MISO

Problem Overview

Assuming a DC OPF problem where transmission network model is considered

New Formulation

Max f(x, price)

 $g(x, price) \le 0$

h(x, price) = 0

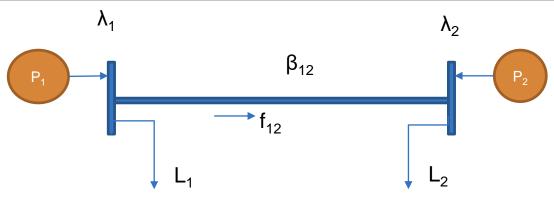
Traditional Formulation

Max f(x)

 $g(x) \leq 0$

h(x) = 0

Illustrative Example



Variable	$\lambda_1 \lambda_2$	β ₁₂	P_{1}, P_{2}	L_1, L_2	f ₁₂
Definition	LMP at 1 and 2	Branch congestion price	Injection at 1 and 2	Load at 1 and 2	Flow from 1 to 2

Find λ_1 , λ_2 , β_{12} , P_1 , P_2 , L_1 and L_2 to optimize an objective function and satisfy a sets of bidding rules/system requirements

However, λ_1 , λ_2 and β_{12} are interdependent and are also dependent upon the flow f_{12} .

Development of a Price Based Formulation

Approach Outline

- Review optimality conditions to a traditional dispatch problem
- Analyze the optimality conditions
- Derive a special relation between node and branch price
- Make a new formulation with newly derived relation between node and branch prices by adding it as new constraint and allowing price to be decision variables
- Consider pricing rules and implementation issues

DC OPF Solution

Consider a dispatch optimization problem with a DC power flow network,

min f(x)

s.t.

$$B\theta - G(x) = 0$$

$$T(\theta) \le 0$$

$$R(x, \theta) \le 0$$

$$H(x, \theta) = 0$$

DC power flow vector
Branch flow constraint
Other inequality constraints
Other equality constraints

where

x: Control variable

B is the admittance matrix and B=Bt

G(x) is the power injection vector

 $T(\theta)$ is the inequality constraint vector for line flow,

R(x) is the rest inequality constraint vector,

H(x) is the rest equality constraint vector, and

 θ is the bus angle vector.

Optimality Conditions

Let

$$L(x, \theta, \lambda, \nu) = f(x) + \lambda^{T}(B\theta - G(x)) + \beta^{T}T(\theta) + \nu^{T}R(x) + \phi^{T}H(x)$$

Where $\beta \geq 0$, $\nu \geq 0$.

In RTO markets:

 $\lambda = LMP$

 β = Branch shadow price

Karush Kuhn Tucker (KKT) optimality necessary conditions:

$$\frac{\partial L}{\partial x} = \frac{\partial f}{\partial x} - \frac{\partial G}{\partial x} \lambda + \frac{\partial R}{\partial x} v + \frac{\partial H}{\partial x} \phi^T = 0$$

$$\frac{\partial L}{\partial \theta} = B^t \lambda + \frac{\partial T}{\partial \theta} \beta = 0$$

$$B\theta - G(x) = 0$$

$$T(\theta) \leq 0$$

$$R(x) \leq 0$$

$$H(x)=0$$

In general, the active set of binding constraints is updated to manage complementary slackness condition that is in the form of

$$\beta^T T = 0$$

<u>Analysis of the Relation of Branch Shadow Price and LMP</u>

Incident Matrices:

A is incidence matrix for a give network topology (direction is arbitrary),

Based on circuit analysis, we can rewrite

$$B=A^{t}DA$$

$$T = DA\theta - T_{max}$$

Where D is the diagonal matrix of the line admittance for the monitored branches.

As a result, the highlighted equation from the last slide becomes

$$B^t \lambda + \frac{\partial G}{\partial \theta} \beta = B^t \lambda + A^t D \beta = 0$$

Revenue Sufficiency

Take inner product of λ and G(x),

$$\lambda^{t}G(x) = \lambda^{t} B\theta = \theta^{t} B^{t} \lambda = -\theta^{t} A^{t} D\beta = flow^{t} \beta$$

Namely, the net payment from all injections are the same of total congestion revenues.

No congestion

$$\beta = 0, B^t \lambda = 0$$

$$Rank(B) = N-1, \lambda_1 = \lambda_2 = \lambda_3 \dots = \lambda$$

N is the number of node.

Price Based Formulation

Consider a dispatch optimization problem of DC power flow

 $Min f(x, \lambda, \beta)$

s.t.

$$B\theta - G(x,\lambda) = 0$$

$$T(\theta) \le 0$$

$$R(x,\theta) \leq 0$$

$$H(x,\theta)=0$$

$$B^t\lambda + A^t D\beta = 0$$

$$\beta^T T = 0$$

λ ≥ Awarded Offer

λ ≤ Awarded Bid

DC power flow Vector

Branch flow constraint

Other inequality constraints

Other equality constraints

Branch-node price Constraint

Complementary slackness

With the Branch-Node Price constraint being added, the new formulation allows use of LMP and branch prices explicitly and directly.

Example

2 bus

2 Bus Example

Let b_{12} is the line admittance between 1 and 2, T_{12max} is the limit flow between 1 and 2,

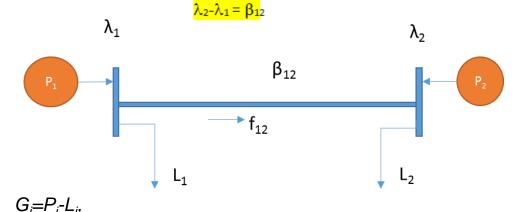
$$L(x, \theta, \lambda, \nu) = f(x) + \lambda^{t}(B \theta - G(x)) + \beta^{T}T(\theta) + \nu^{T}R(x) + \phi^{T}H(x)$$

$$L(x, \theta, \lambda, \nu) = f(x) + \lambda_1(G_1 - b_{12}(\theta_2 - \theta_1)) + \lambda_2(G_2 - b_{12}(\theta_1 - \theta_2)) - \beta_{12}(T_{12max} - b_{12}(\theta_1 - \theta_2)) + \nu^T R(x) + \phi^T H(x)$$

Set slack bus $\theta_1=0$

$$L(x, \theta, \lambda, \nu) = f(x) + \lambda_1(G_1 - b_{12}\theta_2) + \lambda_2(G_2 + b_{12}\theta_2) - \beta_{12}(T_{12max} + b_{12}\theta_2) + \nu^T R(x) + \phi^T H(x)$$

$$\frac{\partial L}{\partial \theta_2} = -\lambda_1 b_{12} + \lambda_2 b_{12} - \beta_{12} b_{12} = 0$$



$$\lambda_2 - \lambda_1 = \beta_{12}$$

LMP difference =Branch congestion price

Example

3 bus

3 Bus Example

Set slack bus θ_1 =0, and assuming one flow constraint between 1 and 2,

$$L(x, \theta, \lambda, \nu) = f(x) + \lambda_1(G_1 - b_{12}\theta_2 - b_{13}\theta_3) + \lambda_2(G_2 + b_{12}\theta_2 - b_{23}(\theta_3 - \theta_2)) + \lambda_3(G_3 + b_{13}\theta_3 - b_{23}(\theta_2 - \theta_3)) - \theta_{12}(T_{12max} + b_{12}\theta_2) + \nu^T R(x) + \phi^T H(x)$$

$$\frac{\partial L}{\partial \theta_2} = -\lambda_1 b_{12} + \lambda_2 b_{12} + \lambda_2 b_{13} + \lambda_3 b_{23} - \theta_{12} b_{12} = 0$$

$$\frac{\partial L}{\partial \theta_3} = \lambda_1 b_{13} - \lambda_2 b_{23} + \lambda_2 b_{13} + \lambda_3 b_{13} - \lambda_3 b_{23} = 0$$

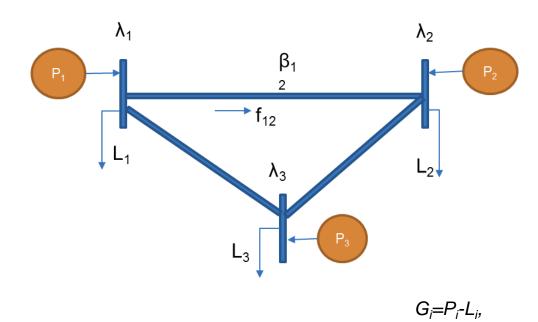
Assuming $b_{12} = b_{13} = b_{23}$

$$-\lambda_1+\lambda_2+\lambda_2-\lambda_3-\beta_{12}=0$$

$$-\lambda_1$$
- λ_2 + λ_3 + λ_3 =0

$$\lambda_2 = \lambda_1 + \frac{2}{3}\beta_{12}$$

$$\lambda_3 = \lambda_1 + \frac{1}{3}\beta_{12}$$



Numerical Example

- Excel Macro Solver
- 5 buses
- 8 resources: flat bid segment
- Objective: Total surplus
- Constraints: DC Load flow

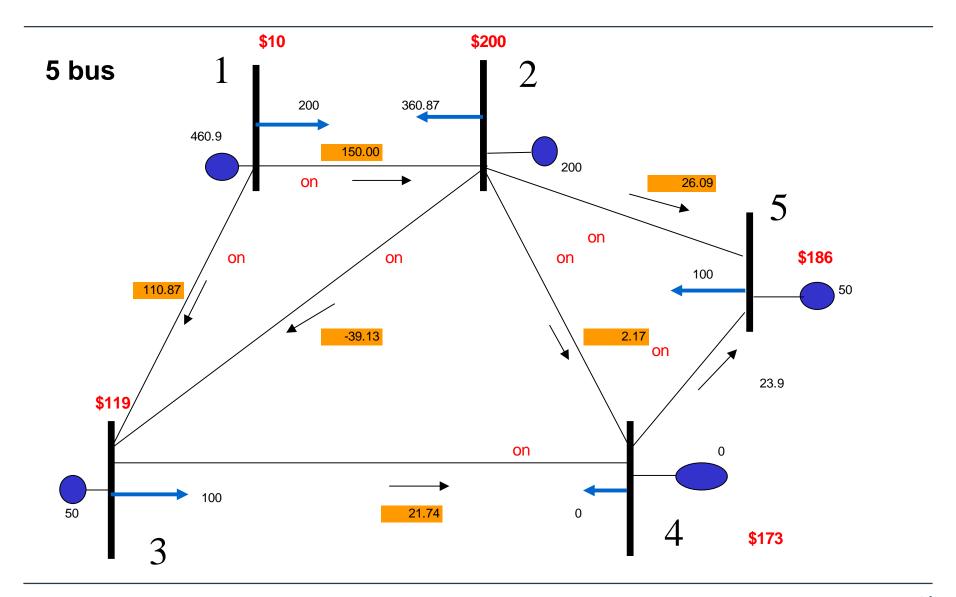
Node and branch prices

Bidding constraints

Complementary Slackness

- Control: Load and gen schedules, λ vector (LMP), β (line shadow price)
- Transmission: 7 links of different line admittances, limited from 1 to 2

Example



Example

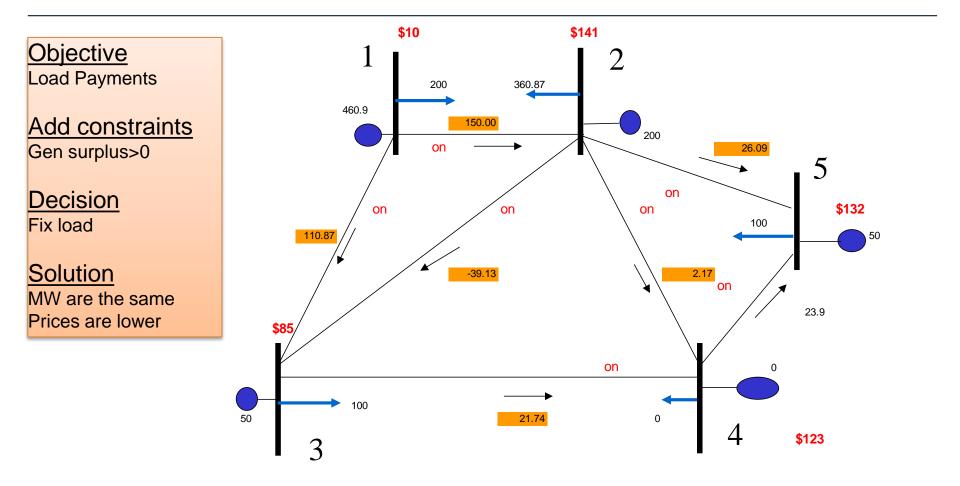
5 bus

Resource	Bus	Type	Bid Price	Bid Qauntity	Cleared	LMP
1	1	G	10.00	750	460.87	10.00
2	2	G	20.00	200	200.00	200.00
3	3	G	50.00	50	50.00	118.66
4	5	G	40.00	50	50.00	186.02
5	1	L	200.00	200	200.00	10.00
6	2	L	200.00	400	360.87	200.00
7	3	L	200.00	100	100.00	118.66
8	5	L	200.00	100	100.00	186.02

Path constraint: 150 MW from 1 to 2

This example serves as validation of the proposed formulation. It gives for the same solution under convex condition.

Payment Minimization

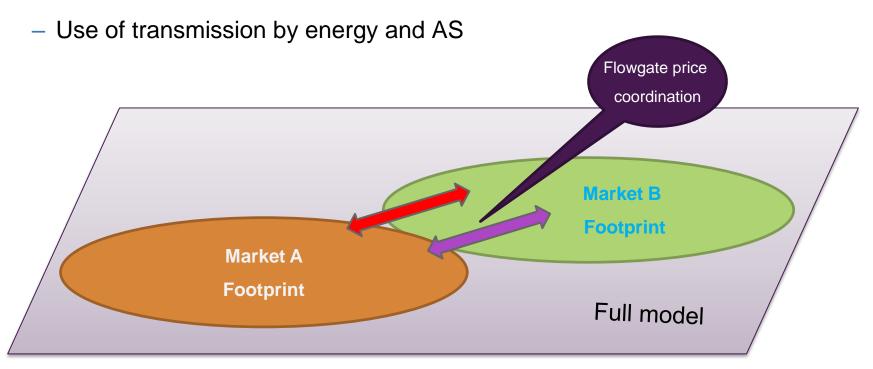


This example serves as another validation. It gives the same scheduling solution, but lower price under payment minimization and fixed load.

Uplift Minimization/Elimination!

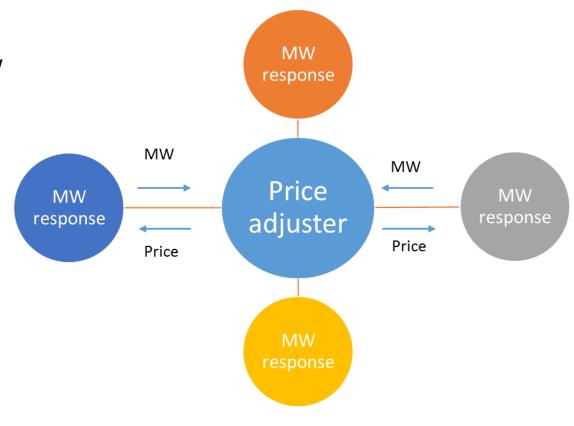
- Uplift is no-longer a post-solution product if price-based optimization is used!
- With prices as decision variables, supplier shortfall associated with 3-part bids can be expressed directly a priori for the scheduling intervals
 - Shortfall = output*energy bids + startup + no-load -output* LMP
- New pricing rules can be modeled in the optimization model
 - Limit shortfall to be smaller than a threshold value
 - Consider shortfall as part of the objective

- Seams coordination between multiple markets
 - Flowgate prices are decision variables and contribution to flowgates by each market can be modeled
- Coordinated scheduling of multi-products



Market structure changes: Potentials for a price-based market

- Decentralized market operation such as self commitment or new computational sub-process
 - Operator adjusts prices (LMP/Shadow)
 - A market participant or a subprocess can optimize its own resources



Simpler market process

- Possible to have one market engine without multiple/inconsistent modules or runs?
- Improve market efficiency?

Other applications are be discovered.

Key Message and Conclusion

- Price based dispatch with a transmission network is demonstrated in theory and in sample system
- Potentials of applying price-based formulation are to be discovered: new solutions may yield innovative and non-obvious applications.

Practical Issues and Further Research

Challenges:

- Local solutions
- Solutions for large-scale system
- Solution properties

More research efforts are needed:

- Three-part bids and commitments, temporal constraints
- Solution properties and market efficiency

Our Contact:

Shangyou.hao@paconsulting.com

www.paconsulting.com

