Market Provision of Flexible Energy/Reserve Contracts

Wanning Li ¹, Leigh Tesfatsion ²

Department of Electrical and Computer Engineering
 Department of Economics
 Iowa State University, Ames, IA

FERC Technical Conference on Increasing Real-Time and Day-Ahead Market Efficiency through Improved Software

June 27-29, 2016

Wanning Li June 29, 2016 1/16

Presentation Outline

- Motivation
- ☐ What is a *Swing Contract*?
- ☐ Swing Contract Market Design: Distinct Features
- Optimal Market Clearing Formulation
- Numerical Illustration
- Conclusion

Motivation

- Need for flexible service provision is growing
 - Increased penetration of variable energy resources
 - Greater uncertainty in customer demand
- Swing contracts permit flexible service provision
 - Permit bundling of multiple service attributes (power, ramp, duration...) within a single contract
 - Permit each service attribute to be offered with *flexibility* (swing) in its implementation range
 - Permit separate market-based compensation for service availability and for actual real-time service performance

Illustrative Swing Contract (SC)

Offered Contractual Terms

$$SC = [b, t_s, t_e, \mathcal{P}, \mathcal{R}, \phi]$$

b =location where service delivery is to occur;

 t_s = power delivery start time;

 t_e = power delivery end time;

 $\mathcal{P} = [P^{min}, P^{max}] = \text{range of power levels } p;$

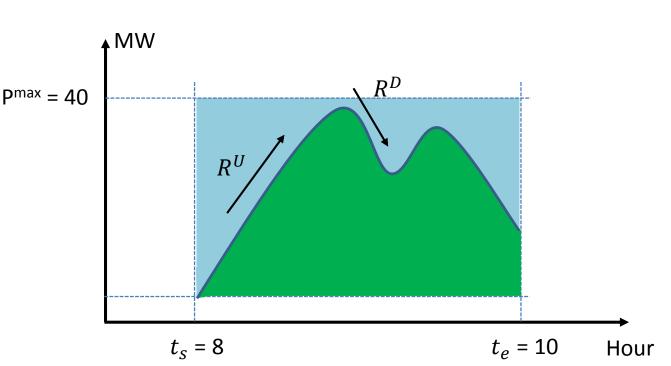
 $\mathcal{R} = [-R^D, R^U] = \text{range of down/up ramp rates } r;$

 ϕ = Performance payment method for real-time services.

α = Availability price

Payment requested by SC issuer for ensuring service availability

Swing (flexibility) is offered in both the power level *p* and the ramp rate *r*


Numerical Example:

Note: A very simple type of performance payment method φ is illustrated here.

$$\alpha$$
 = \$100
 b = bus b;
 t_s = 8:00am;
 t_e = 10:00am;
 $\mathcal{P} = [P^{min}, P^{max}] = [10\text{MW}, 40\text{MW}];$
 $\mathcal{R} = [-R^D, R^U] = [-38\text{MW/h}, 28\text{MW/h}];$
 ϕ = \$35/MWh.

Depiction of SC Numerical Example

Swing Contract (SC):

$$\alpha = $100$$

$$b = bus b$$
;

$$t_s = 8:00 \text{am};$$

$$t_e = 10.00$$
am;

$$\mathcal{P} = [P^{min}, P^{max}] = [10MW, 40MW];$$

$$\mathcal{R} = [-R^D, R^U] = [-38MW/h, 28MW/h];$$

$$\phi = $35/\text{MWh}.$$

Note: The above figure depicts one possible power path a day-ahead market operator could dispatch in real time, in accordance with the terms of this SC. The green area is the resulting delivery of energy (MWh), compensated ex post at \$35/MWh.

Day-Ahead Market (DAM) Comparison

		Current DAM	Proposed SC DAM							
Sir	milarities	 Conducted day-ahead to plan for next-day operations ISO-managed MPs can include GenCos, LSEs, DRAs, ESDs, & VERs Subject to same physical constraints: e.g. transmission, generation, ramping, & power-balance constraints 								
	Optimization formulation	SCUC & SCED	Contract-clearing							
	• Settlement	Locational marginal pricing	Contract-determined prices							
Differences	• Payment	Payment for next-day service before actual performance	Payment for availability now & performance ex post							
	 Out-of-market payments 	Uplift payments (e.g., for UC)	No							
	 Information released to MPs 	UC, DAM LMPs, & next-day dispatch schedule	Which contracts have been cleared							

DAM Comparison ContinuedOptimization Formulati													
		SCUC	SCED	SC Contract Clearing									
Simi	larities	Both SCUC & SC conti programming (MILP)	•	d as mixed integer linear physical constraints									
		Min {Start-Up /Shut-	Min (Dispotab										

Differences

Start-up & shut-down Yes constraints Key **Unit Commitment** decision vector variables Settlement

Down Costs + No-Load Costs + Dispatch Costs + Reserve Costs}

Min {Dispatch Costs + Reserve Costs} No

Min {Availability Cost + **Expected Performance Cost** Start-up/shut-down constraints are implicit in

Energy dispatch & reserves

submitted contracts

Cleared contracts

LMPs calculated as

SCED dual

variables

Availability prices paid for cleared contracts

Objective

New MILP Optimization Formulation (Li & Tesfatsion, GM 2016)

ISO's Optimization Problem for SC Market:

Subject to:

- Unit commitment constraints
- Transmission constraints
- Power balance constraints
- Capacity constraints
- Down/up ramping constraints
- System-wide down/up reserve requirements

m: Index for market participantswith dispatchable servicest: Hour index

Input data:

 α_m : Availability price for m's SC offer

 $\phi_m(t)$: Hour-t performance price in m's SC offer

 $NL_b(t)$: Net load forecast for bus b in hour t

RR^D(t), RR^U(t): System-wide down/up reserve requirements for hour t

ISO Decision variables:

 c_m : m's SC offer cleared or not (1/0) $p_m(t)$: Power output for m in hour t

8/16

Unit Commitment Constraints for SC DAM

Unit commitment constraints:

$$v_m(t) = c_m \cdot A_m(t), \quad \forall m \in \mathcal{M}, t \in T$$

$$\forall m \in \mathcal{M}. \ t \in T$$

 c_m : m's SC offer cleared or not (1/0) $v_m(t)$: UC vector, (1/0) $A_m(t)$: Binary input, 1 if t is within contract service period, 0 otherwise

The unit commitment $v_m(t) \in \{0,1\}$ for each market participant $m \in \mathcal{M}$ in each period t is determined by two factors:

- Is m's SC offer cleared by the ISO? \longrightarrow c_m (a)
- Does m's SC offer include service for hour t? \longrightarrow $A_m(t)$ (b)

Example:

Illustrative SC was given for a market participant *m* that offers power from 8:00am to 10:00am. Thus, for this *m*:

$$A_m(t) = \begin{cases} 1 & \text{if } t \in \{8, 9, 10\} \\ 0 & \text{if } t \in \{1, \dots, 7\} \cup \{11, \dots, 24\} \end{cases}$$

Transmission Constraints for SC DAM

Voltage angle specification at angle reference bus 1:

$$\theta_1(t) = 0, \quad \forall t \in T$$

Line power constraints:

$$w_{\ell}(t) = S_0 B(\ell) \left[\theta_{s(\ell)}(t) - \theta_{e(\ell)}(t) \right],$$

$$-\pi \le \theta_b(t) \le \pi, \ \forall b \in \mathcal{B}, \ell \in \mathcal{L}, \ t \in T$$

Transmission constraints:

$$-F_{\ell}^{max} \le w_{\ell}(t) \le F_{\ell}^{max}, \qquad \forall \ell \in \mathcal{L}, \ t \in T$$

SC DAM Constraints Continued...

• Power balance constraints:

$$\sum_{m \in \mathcal{M}_b} p_m(t) + \sum_{\ell \in \mathcal{L}_b} w_{\ell}(t) = NL_b(t), \ \forall b \in \mathcal{B}, \ t \in T$$

Capacity constraints:

$$\underline{p}_{m}(t) \leq p_{m}(t) \leq \overline{p}_{m}(t), \qquad \forall m \in \mathcal{M}, \ t \in T
\overline{p}_{m}(t) \leq P_{m}^{max} v_{m}(t), \qquad \forall m \in \mathcal{M}, \ t \in T
\underline{p}_{m}(t) \geq P_{m}^{min} v_{m}(t), \qquad \forall m \in \mathcal{M}, \ t \in T$$

Down/up ramping constraints:

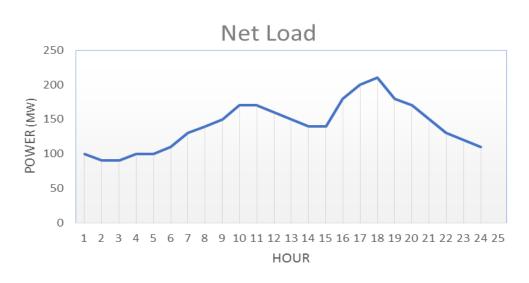
$$\bar{p}_m(t) - p_m(t-1) \leq R_m^U \Delta t v_m(t-1) + P_m^{max} [1 - v_m(t-1)]$$

$$\forall m \in \mathcal{M}, \ \forall t = 2, \cdots, |T|$$

$$p_m(t-1) - \underline{p}_m(t) \leq R_m^D \Delta t \cdot v_m(t) + P_m^{max} [1 - v_m(t)]$$

$$\forall m \in \mathcal{M}, \ \forall t = 2, \cdots, |T|$$

• System-wide reserve requirements:


$$\sum_{m \in \mathcal{M}} \overline{p}_m(t) \ge \sum_{b \in \mathcal{B}} NL_b(t) + RR^U(t), \quad \forall t \in T$$

$$\sum_{m \in \mathcal{M}} \underline{p}_m(t) \le \sum_{b \in \mathcal{B}} NL_b(t) - RR^D(t), \quad \forall t \in T$$

Illustrative 3-GenCo Example: Input Data

TABLE I SCS SUBMITTED BY THE THREE GENCOS IN THE ILLUSTRATIVE EXAMPLE

GenCo	Service Period	Power Range	Ramp Rate Range	Performance Price	Availability Price
	$[t_s,t_e]$	$[P^{min}, P^{max}]$ (MW)	$[-R^D, R^U]$ (MW/h)	ϕ (\$/MWh)	α (\$)
1	[1, 24]	[0, 80]	[-60, 60]	25	1500
2	[1, 24]	[0, 200]	[-30, 30]	10	2000
3	[8, 24]	[0, 120]	[-50, 50]	20	1000

Hour	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
NetLoad (MW)	100	90	90	100	100	110	130	140	150	170	170	160	150	140	140	180	200	210	180	170	150	130	120	110

Illustrative 3-GenCo Example: Results

Contract Clearing

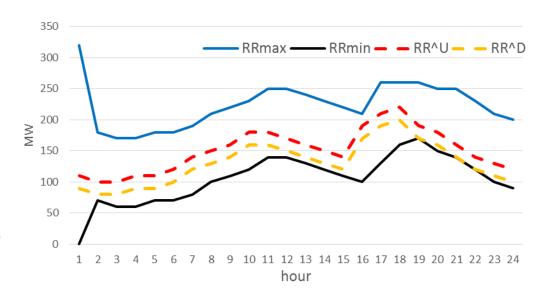
GenCo	Cleared Contract	
1	0	Info released to GenCos
2	1	
3	1	

Unit Commitment

GenCo											Hou	urs												
Geneo	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Optimal Dispatch Schedule

GenCo										Н	ours		Hours														
Geneo	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24			
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
2	100	90	90	100	100	110	130	140	150	170	170	160	150	140	130	160	190	200	180	170	150	130	120	110			
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20	10	10	0	0	0	0	0	0			


Illustrative 3-GenCo Example: Results...Cont'd

Inherent Reserve Range

$$\begin{split} RR^{max}(t) &= \sum_{m \in \mathcal{M}} \overline{p}_m(t) & \forall t \in T \\ RR^{min}(t) &= \sum_{m \in \mathcal{M}} \underline{p}_m(t) & \forall t \in T \end{split}$$

The terms RR^{max}(t) and RR^{min}(t) are the maximum and minimum power levels available for the system in hour t *along the solution path*.

The *inherent reserve range* for hour t can then be calculated as $RR(t) = [RR^{min}(t), RR^{max}(t)].$

Solid Lines = Inherent reserve range around the solution path, due to swing

Dotted Lines = Down/up reserve requirements, specified in advance

In conclusion, swing contracts...

- Permit multiple service attributes (power, ramp, duration,...)
 to be bundled together & offered in one contract
- Permit each service attribute to be offered with swing (flexibility) in its implementation range
- Permit market-based compensation of service availability through SC availability (offer) prices
- Permit market-based ex-post compensation of actual service performance thru contractual performance payment methods
- Can be optimally cleared within a market context via a mixed integer linear programming (MILP) optimization formulation

Online Resources

- [1] Wanning Li & Leigh Tesfatsion, "Market Provision of Flexible Energy/Reserve Contracts: Optimization Formulation," Working Paper #15019, Econ Department, ISU, Nov 2015. To appear in *Proceedings of the PES GM 2016*, Boston, MA. http://www2.econ.iastate.edu/tesfatsi/MarketProvisionSwingContracts.LiTesfatsion.WP15019.pdf
- [2] Deung-Yong Heo & Leigh Tesfatsion, "Facilitating Appropriate Compensation of Electric Energy and Reserve Through Standardized Contracts with Swing," *Journal of Energy Markets* 8(4), December 2015, 93-121 (Presented at FERC Technical Conferences 2014/2015) http://www2.econ.iastate.edu/tesfatsi/SwingContractsJEMPreprint.HeoTes2015.pdf
- [3] Leigh S. Tesfatsion, César A. Silva-Monroy, Verne W. Loose, James F. Ellison, Ryan T. Elliott, Raymond H. Byrne, and Ross T. Guttromson, "New Wholesale Power Market Design Using Linked Forward Markets: A Study for the DOE Energy Storage Systems Program," Sandia Report, SAND2013-2789, Unlimited Release, April 2013. (Sandia/ARPA-E Project) http://www2.econ.iastate.edu/tesfatsi/MarketDesignSAND2013-2789.LTEtAl.pdf