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Motivation and Background

Power system operation optimization problem: stochastic,
continuous-time, mixed-integer

Current practice: break down the problem into different time scales,
from several days ahead to real-time operation, solving discrete-time
optimization problems for each time scale.
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Power System Operation: Current Practice

• The current practice to solve power system operation optimization problem is to 
break it down into different time scales, from several days ahead to real-time.
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Implications of Discrete-time Operation Models

Implication of discrete-time generation schedule:

Generation trajectory is modeled by zero-order piecewise constant curve

Ramping of units is defined as the finite difference between the
consecutive discrete-time generation schedules (there is no explicit
ramping trajectory).

The discrete-time generation trajectories do not appropriately capture
the flexibility of generating units to balance the continuous-time
variations (ramping) of load, and leaves out residual that needs to be
supplied in real-time operation

If the real-time ramping requirement is beyond the available ramping
capacity → ramping scarcity event
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Continuous-time Generation and Ramping Trajectories

Instead of discrete-time schedules, assume that a set of K generating
units are modeled by:
– Continuous-time generation trajectories: G(t)=(G1(t), . . . ,GK (t))T

– Continuous-time commitment variables: I(t)=(I1(t), . . . , IK (t))T

Ik(t) =
∑Hk

h=1

(
u(t − t(SU)k,h )− u(t − t(SD)k,h )

)

We define the continuous-time ramping trajectory of unit k as the
time derivative of its continuous-time generation trajectory:

Ġk(t) ,
dGk(t)

dt

Vector of continuous-time ramping trajectories of units: Ġ(t)

Explicit definition of ramping trajectories allows us to define cost
functions that are also functions of ramping trajectories:

Ck(Gk(t), Ġk(t), Ik(t))
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Ġk(t) ,
dGk(t)

dt

Vector of continuous-time ramping trajectories of units: Ġ(t)
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Continuous-time Unit Commitment Model

Continuous-time Unit Commitment:

min
K∑

k=1

∫
T
Ck(Gk(t), Ġk(t), Ik(t))dt

s.t.
K∑

k=1

Gk(t) = N(t) ∀t ∈ T

G k Ik(t) ≤ Gk(t) ≤ G k Ik(t) ∀k , t ∈ T

Ġ k Ik(t) ≤ Ġk(t) ≤ Ġ k Ik(t) ∀k , t ∈ T
t(SD)k,h − t(SU)k,h ≥ T (on)

k , t(SU)k,h+1 − t(SD)k,h ≥ T (off)
k ∀k , h, t ∈ T

The continuous-time UC model is a constrained variational problem
with infinite dimensional decision space
⇒ We need to reduce dimensionality of the problem. Idea:

1 Subdivide T into M intervals: Tm =[tm, tm+1), T =∪M−1
m=0 Tm.

2 Map the parameters and decision variables in each interval into a
finite-dimensional function space.

c©2016 Masood Parvania, and the University of Utah Continuous-time Operation Optimization of Power Systems 5 / 16



Continuous-time Unit Commitment Model

Continuous-time Unit Commitment:

min
K∑

k=1

∫
T
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Continuous-time Trajectories in a Function Space

Assume that in T , except for a small residual error, the
continuous-time load trajectory N(t) lies in a countable and finite
function space of dimensionality P, spanned by a set of basis
functions e(t) = (e1(t), . . . , eP(t))T , that is:

N(t) =
P∑

p=1

Npep(t) + εN(t) = NTe(t) + εN(t)

N = (N1, . . . ,NP)T : coordinates of the approximation onto the
subspace spanned by e(t).

To ensure the power balance in continuous-time, any generation
trajectory should have a component that lies in the same subspace
spanned by e(t) and one that is orthogonal to it, i.e.,:

Gk(t) =
P∑

p=1

Gk,pep(t) + εGk
(t) = GT

k e(t) + εGk
(t).
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Spline Representation using Cubic Hermite Polynomials

Cubic Hermite Polynomials: four polynomials in t ∈ [0, 1), forming
the vector: H(t) = (H00(t),H01(t),H10(t),H11(t))T

Cubic	Hermite	Spline	Interpola3on	

14	

0 00 1 10

0 01 1 11

( ) ( ) ( )
( ) ( )

p t p H t p H t
v H t v H t

= +

+ +

Modeling the continuous-time load and generation trajectories in
spline function space of cubic Hermite:

N̂(t) =
M−1∑
m=0

HT (τm)NH
m , Gk(t) =

M−1∑
m=0

HT (τm)GH
k,m

NH
m and GH

k,m are the vectors of Hermite coefficients.
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Spline Representation using Bernstein Polynomials

Bernstein Polynomials of degree Q: Q + 1 polynomials in t ∈ [0, 1),
forming the vector BQ(t) = (B0,Q , ...,Bq,Q , ...,BQ,Q)T , where
Bq,Q(t) =

(q
Q

)
tq(1− t)Q−q

Modeling the continuous-time load and generation trajectories in
spline function space of Bernstein polynomials of degree 3:

N̂(t) =
M−1∑
m=0

BT
3 (τm)NB

m , Gk(t) =
M−1∑
m=0

BT
3 (τm)GB

k,m

Cubic	Hermite	Spline	Interpola3on	

15	

The Bernstein and Hermite coefficients are linearly related:

GB
k,m = WTGH

k,m , NB
k,m = WTNH

k,m
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Why Bernstein Polynomials?

Bernstein coefficients of the derivative of generation trajectory are
linearly related with the coefficients of the generation trajectory:

Ġk(t) =
M−1∑
m=0

BT
2 (τm)ĠB

k,m , ĠB
k,m = KTGB

k,m = KTWTGH
k,m

Convex hull property of the Bernstein polynomials: trajectories are
bounded by the convex hull formed by the four Bernstein points:

min
tm≤t≤tm+1

{BT
3 (τm)GB

k,m} ≥ min{GB
k,m}

max
tm≤t≤tm+1

{BT
3 (τm)GB

k,m} ≤ max{GB
k,m}

min
tm≤t≤tm+1

{BT
2 (τm)ĠB

k,m} ≥ min{ĠB
k,m}

max
tm≤t≤tm+1

{BT
2 (τm)ĠB

k,m} ≤ max{ĠB
k,m}
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Representation of Cost Function and Balance Constraint

Piecewise linear continuous-time cost function can be written in terms
of the spline coefficients of generation and ramping trajectories:∫

T
Ck(Gk(t), Ġk(t), Ik(t))dt = Ck(Gk , Ġk , Ik).

Continuous-time power balance is ensured by balancing the four cubic
Hermite coefficients of the continuous-time load and generation
trajectory in each interval:

K∑
k=1

Gk(t) = N(t) ∀t ∈ T →
K∑

k=1

GH
k,m = NH

m ∀m

DC power flow constraints can be modeled similarly.
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Continuous-time UC Solution

Function Space-based 
Unit Commitment

Projection in Cubic 
Hermite Function Space

Reconstructing Gk(t), 
, and Ik(t)

Generation 
Constraints 
and Bids
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Simulation Results: IEEE-RTS + CAISO Load

The data regarding 32 units of
the IEEE-RTS and load data from
the CAISO are used here.

Both the day-ahead (DA) and
real-time (RT) operations are
simulated.

The five-minute net-load forecast
data of CAISO for Feb. 2, 2015 is
scaled down to the original
IEEE-RTS peak load of 2850MW,
and the hourly day-ahead load
forecast is generated where the
forecast standard deviation is
considered to be %1 of the load
at the time.
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Reduced Operation Cost and Ramping Scarcity Events

Case 1: Hourly UC Model

Case 2: Continuous-time UC Model
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Continuous-time Model Outperforms Discrete-time Models

Simulations are repeated for
CAISO’s load data of the entire
month of Feb. 2015.
Half-hourly UC model is also
simulated.

The proposed model
outperforms the other two cases
in terms of real-time and total
operation cost reduction, even
compared to the half-hourly UC
solution with twice the binary
variables.

Computation time for Feb. 2,
2015 load data:
– Hourly UC: 0.257s
– Half-hourly UC: 0.572s
– Proposed UC: 1.369s
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Conclusions

Continuous-time models capture the continuous-time variations of
load and renewable resources, and tap the flexibility of generating
units and other flexible resources to ramp beyond the current linear
ramping paradigm

Continuous-time models define ramping trajectory as an explicit
decision variable and enable accurate ramping valuation in markets

Enabling the definition of continuous-time marginal electricity price:
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