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Motivation and Background

@ Power system operation optimization problem: stochastic,
continuous-time, mixed-integer
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Motivation and Background

@ Power system operation optimization problem: stochastic,
continuous-time, mixed-integer

@ Current practice: break down the problem into different time scales,
from several days ahead to real-time operation, solving discrete-time
optimization problems for each time scale.
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Implications of Discrete-time Operation Models

@ Implication of discrete-time generation schedule:
o Generation trajectory is modeled by zero-order piecewise constant curve
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Implications of Discrete-time Operation Models

@ Implication of discrete-time generation schedule:

o Generation trajectory is modeled by zero-order piecewise constant curve

e Ramping of units is defined as the finite difference between the
consecutive discrete-time generation schedules (there is no explicit
ramping trajectory).
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Implications of Discrete-time Operation Models

@ Implication of discrete-time generation schedule:

o Generation trajectory is modeled by zero-order piecewise constant curve

e Ramping of units is defined as the finite difference between the
consecutive discrete-time generation schedules (there is no explicit
ramping trajectory).

@ The discrete-time generation trajectories do not appropriately capture
the flexibility of generating units to balance the continuous-time
variations (ramping) of load, and leaves out residual that needs to be
supplied in real-time operation
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Implications of Discrete-time Operation Models

@ Implication of discrete-time generation schedule:

o Generation trajectory is modeled by zero-order piecewise constant curve

e Ramping of units is defined as the finite difference between the
consecutive discrete-time generation schedules (there is no explicit
ramping trajectory).

@ The discrete-time generation trajectories do not appropriately capture
the flexibility of generating units to balance the continuous-time
variations (ramping) of load, and leaves out residual that needs to be
supplied in real-time operation

@ If the real-time ramping requirement is beyond the available ramping
capacity — ramping scarcity event
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Continuous-time Generation and Ramping Trajectories

@ Instead of discrete-time schedules, assume that a set of K generating

units are modeled by:
— Continuous-time generation trajectories: G(t)=(Gi(t),...,Gk(t))"
t

t
— Continuous-time commitment variables: 1(t)=(h(t),...,Ik(t))T

I(t) = St <u(t —t57) — u(t - t,f?,?)))
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Continuous-time Generation and Ramping Trajectories

@ Instead of discrete-time schedules, assume that a set of K generating

units are modeled by:
— Continuous-time generation trajectories: G(t)=(Gi(t),...,Gk(t))"
— Continuous-time commitment variables: 1(t)=(/(t),. IK( )"

_\H (sU) (SD)
I(t) = >0y (”(t —tep ) —u(t =t ))
@ We define the continuous-time ramping trajectory of unit k as the
time derivative of its continuous-time generation trajectory:

A de( )

Gk(t) pm

Vector of continuous-time ramping trajectories of units: G(t)
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Continuous-time Generation and Ramping Trajectories

@ Instead of discrete-time schedules, assume that a set of K generating

units are modeled by:
— Continuous-time generation trajectories: G(t)=(Gi(t),...,Gk(t))"
— Continuous-time commitment variables: 1(t)=(/(t),. IK( )"

_\H (sU) (SD)
I(t) = >0y (”(t —tep ) —u(t =t ))
@ We define the continuous-time ramping trajectory of unit k as the
time derivative of its continuous-time generation trajectory:

Gi(t) £ dG;: )

Vector of continuous-time ramping trajectories of units: G(t)
@ Explicit definition of ramping trajectories allows us to define cost
functions that are also functions of ramping trajectories:

Cr(Gr(t), Gi(t), Ik(t))
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Continuous-time Unit Commitment Model

@ Continuous-time Unit Commitment:

K .
kZ_:l/TCk(Gk(t),Gk(t),/k(t))dt

K
st. Y Ge(t) = N(t) vte T

Gl(t) < Gi(t) < Gile(t) Vk,teT
Guli(t) < Gr(t) < Grle(t) Vk,teT

B 8D > T | D 6D > Ty pre T
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Continuous-time Unit Commitment Model

@ Continuous-time Unit Commitment:

K .
kZ_:l/TCk(Gk(t),Gk(t),/k(t))dt

K
st. Y Ge(t) = N(t) vte T

Gl(t) < Gi(t) < Gile(t) Vk,teT
Guli(t) < Gr(t) < Grle(t) Vk,teT
t(SD) t(SU) > T(on), IESI?-i)-l (SD) > T(off) Vk, h,te T

@ The continuous-time UC model is a constrained variational problem
with infinite dimensional decision space
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Continuous-time Unit Commitment Model

@ Continuous-time Unit Commitment:

K .
kZ_:l/TCk(Gk(t),Gk(t),/k(t))dt

K
st. Y Ge(t) = N(t) vte T

Gl(t) < Gi(t) < Gile(t) Vk,teT
Gili(t) < Gi(t) < Gule(t) Vk,teT
t(SD) t(SU) > T(on), IESI?-i)-l (SD) > T(off) Vk, h t e T
@ The continuous-time UC model is a constrained variational problem
with infinite dimensional decision space
= We need to reduce dimensionality of the problem. Idea
@ Subdivide T into M intervals: Tp=[tm, tms1), T = U Tm
@ Map the parameters and decision variables in each mterval into a
finite-dimensional function space.
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Continuous-time Trajectories in a Function Space

@ Assume that in 7T, except for a small residual error, the
continuous-time load trajectory N(t) lies in a countable and finite
function space of dimensionality P, spanned by a set of basis
functions e(t) = (e1(t),...,ep(t))7, that is:

P
N(t) = Npep(t) + en(t) = NTe(t) + en(t)
p=1

N = (Ny,...,Np)T: coordinates of the approximation onto the
subspace spanned by e(t).
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Continuous-time Trajectories in a Function Space

@ Assume that in 7T, except for a small residual error, the
continuous-time load trajectory N(t) lies in a countable and finite
function space of dimensionality P, spanned by a set of basis
functions e(t) = (e1(t),...,ep(t))7, that is:

P
N(t) = Npep(t) + en(t) = NTe(t) + en(t)
p=1

N = (Ny,...,Np)T: coordinates of the approximation onto the
subspace spanned by e(t).

@ To ensure the power balance in continuous-time, any generation
trajectory should have a component that lies in the same subspace
spanned by e(t) and one that is orthogonal to it, i.e.,:

P
Gi(t) =Y Gipep(t) + €6, (t) = Gl e(t) + €6, (1).
p=1
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Spline Representation using Cubic Hermite Polynomials

@ Cubic Hermite Polynomials: four polynomials in t € [0,1), forming
the vector: H(t) = (Hoo(t), H01(t), Hlo(t), Hll(t))T

[AQ)
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Spline Representation using Cubic Hermite Polynomials

@ Cubic Hermite Polynomials: four polynomials in t € [0,1), forming
the vector: H(t’) = (Hoo(t), H01(t), Hlo(t), Hll(t))T

[AQ)

@ Modeling the continuous-time load and generation trajectories in
spline function space of cubic Hermite:

0

M-1
N(t)=> HT(mm)Nf . G(t)= > HT(mm)GY,
m=0 0

3
Il

NH and Gka are the vectors of Hermite coefficients.
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Spline Representation using Bernstein Polynomials

@ Bernstein Polynomials of degree Q: @ + 1 polynomials in t € [0,1),
forming the vector Bg(t) = (Bo.@, -+ B4.@» ---» BQ.Q) |, where
Bao(t) = (8)19(1 — )9~

@ Modeling the continuous-time load and generation trajectories in
spline function space of Bernstein polynomials of degree 3:

M-1 M-1
N(t) = By (tm)N5 . Gi(t) = > B (7m)GE

m=0 m=0
| G.(t) "
or S

ot g

t
0 0 1 tn a e

(©2016 Masood Parvania, and the University of Utah Continuous-time Operation Optimization of Power Systems 8 /16



Spline Representation using Bernstein Polynomials

@ Bernstein Polynomials of degree Q: @ + 1 polynomials in t € [0,1),
forming the vector Bg(t) = (Bo.@, -+ B4.@» ---» BQ.Q) |, where
Bao(t) = (8)19(1 — )9~

@ Modeling the continuous-time load and generation trajectories in
spline function space of Bernstein polynomials of degree 3:

M—1 M—1
A0 = 3 BIrINE . Gi(6) = Y BI(rm)GE,,

1 G.(n)

0
0 1 m - mal

@ The Bernstein and Hermite coefficients are linearly related:
G, =WT'G/, ., NZ =W'N/
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Why Bernstein Polynomials?

@ Bernstein coefficients of the derivative of generation trajectory are
linearly related with the coefficients of the generation trajectory:

Gk(t) = B;(Tm)cf,m ’ GE,m = KTGE,m = KTWTGE,m
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Why Bernstein Polynomials?

@ Bernstein coefficients of the derivative of generation trajectory are
linearly related with the coefficients of the generation trajectory:
M—1
- T ~B ~B TB w7 H
Gk(t) = By (Tm)Gkm > Gim=K' Gg, =KW G/,

m=0

@ Convex hull property of the Bernstein polynomials: trajectories are
bounded by the convex hull formed by the four Bernstein points:

,nin - {BF (Tm)Gi} = min{GE .}
tm<r?<a§m+1{ (T’")Gk mb < maX{Gk m}
,min (B (Tm)Gi} = min{GE .}
tm<nt1§i(m+1{82 (7m)G E,m} < max{Gﬁm}
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Representation of Cost Function and Balance Constraint

@ Piecewise linear continuous-time cost function can be written in terms
of the spline coefficients of generation and ramping trajectories:

/Tck(ck(t), Ge(B), Ie(D))dt = Cu(Gr, G, 1).
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Representation of Cost Function and Balance Constraint

@ Piecewise linear continuous-time cost function can be written in terms
of the spline coefficients of generation and ramping trajectories:

/Tck(ck(t), Ge(B), Ie(D))dt = Cu(Gr, G, 1).

o Continuous-time power balance is ensured by balancing the four cubic
Hermite coefficients of the continuous-time load and generation
trajectory in each interval:

K K
D G(t)=N(t) vteT = Y G, =NI Vm
k=1 k=1
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Representation of Cost Function and Balance Constraint

@ Piecewise linear continuous-time cost function can be written in terms
of the spline coefficients of generation and ramping trajectories:

/Tck(ck(t), Ge(B), Ie(D))dt = Cu(Gr, G, 1).

o Continuous-time power balance is ensured by balancing the four cubic
Hermite coefficients of the continuous-time load and generation
trajectory in each interval:

K K
D G(t)=N(t) vteT = Y G, =NI Vm
k=1 k=1

@ DC power flow constraints can be modeled similarly.
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Continuous-time UC Solution

Projection in Cubic
N(t) —> .
(t) Hermite Function Space

NH
' m
Generat_lon Function Space-based
Constraints —» Unit C it t
and Bids it -ommitmen

Ik(tm) ’Gim GI?m = WTGH

k,m

Gu(H) Cul)

Reconstructing Gy(t), .

Gr(t), and I(t) —> Gi(t)
I (t)
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Simulation Results: IEEE-RTS 4+ CAISO Load

@ The data regarding 32 units of
the IEEE-RTS and load data from
the CAISO are used here.

@ Both the day-ahead (DA) and
real-time (RT) operations are
simulated.

@ The five-minute net-load forecast
data of CAISO for Feb. 2, 2015 is
scaled down to the original
IEEE-RTS peak load of 2850MW,
and the hourly day-ahead load
forecast is generated where the
forecast standard deviation is
considered to be %1 of the load
at the time.
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Reduced Operation Cost and Ramping Scarcity Events

@ Case 1: Hourly UC Model
@ Case 2: Continuous-time UC Model

3000

@

Generation Schedule (MW)

Generation Schedule (MW)
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Reduced Operation Cost and Ramping Scarcity Events

@ Case 1: Hourly UC Model
@ Case 2: Continuous-time UC Model

@

2500

g

1500

Generation Schedule (MW)

Total operation cost and ramping scarcity
events are reduced in Case 2

Case DA Operation | RT Operation | Total DA and RT RT Ramping
Cost ($) Cost ($) Operation Cost ($) | Scarcity Events

Casel 471,130.7 16,882.9 488,013.6 27

Case2 476,226.4 6,231.3 482,457.7 0

Generation Schedule (MW)
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=Group I Hydro = Group 2: Nuclear 155 =

= Group 6: 0il 100_mGroup 7: Oil 197 mGroup8: Oil 12 mGroup 9: Oil 20
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Reduced Operation Cost and Ramping Scarcity Events

@ Case 1: Hourly UC Model
@ Case 2: Continuous-time UC Model

Total operation cost and ramping scarcity

@

2500

g
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Generation Schedule (MW)

events are reduced in Case 2

Generation Schedule (MW)
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C DA Operation | RT Operation | Total DA and RT RT Ramping
Cost ($) Cost ($) Operation Cost ($) | Scarcity Events
Casel 471,130.7 16,882.9 488,013.6 27
Case2 476,226.4 6,231.3 482,457.7 0

Continuous-time ramping trajectories
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Continuous-time Model Outperforms Discrete-time Models

@ Simulations are repeated for
CAISO’s load data of the entire
month of Feb. 2015.
Half-hourly UC model is also
simulated.
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Continuous-time Model Outperforms Discrete-time Models

@ Simulations are repeated for
CAISO’s load data of the entire
month of Feb. 2015.
Half-hourly UC model is also
simulated.

The proposed model
outperforms the other two cases
in terms of real-time and total
operation cost reduction, even
compared to the half-hourly UC
solution with twice the binary
variables.
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Continuous-time Model Outperforms Discrete-time Models

@ Simulations are repeated for
CAISO’s load data of the entire
month of Feb. 2015.
Half-hourly UC model is also
simulated.

The proposed model
outperforms the other two cases
in terms of real-time and total
operation cost reduction, even
compared to the half-hourly UC
solution with twice the binary
variables.

Computation time for Feb. 2,
2015 load data:

— Hourly UC: 0.257s

— Half-hourly UC: 0.572s

— Proposed UC: 1.369s
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Conclusions

o Continuous-time models capture the continuous-time variations of
load and renewable resources, and tap the flexibility of generating
units and other flexible resources to ramp beyond the current linear
ramping paradigm
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Conclusions

o Continuous-time models capture the continuous-time variations of
load and renewable resources, and tap the flexibility of generating
units and other flexible resources to ramp beyond the current linear
ramping paradigm

o Continuous-time models define ramping trajectory as an explicit
decision variable and enable accurate ramping valuation in markets
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Conclusions

o Continuous-time models capture the continuous-time variations of
load and renewable resources, and tap the flexibility of generating
units and other flexible resources to ramp beyond the current linear
ramping paradigm

o Continuous-time models define ramping trajectory as an explicit
decision variable and enable accurate ramping valuation in markets

@ Enabling the definition of continuous-time marginal electricity price:

)
N

Continuous-time Price
Hourly Price

N
&

==== Half-hourly Price

N
I

3

Marginal Price ($ per MW in unit of time)

0 2 4 6 8 10 12 14 16 18 20 22 24
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Further Reading

e M. Parvania, A. Scaglione, “Unit Commitment with Continuous-time
Generation and Ramping Trajectory Models,” /EEE Transactions on
Power Systems, vol. 31, no. 4, pp. 3169-3178, July 2016.

@ M. Parvania, A. Scaglione, “Generation Ramping Valuation in

Day-Ahead Electricity Markets,” in Proc. 49th Hawaii International
Conference on System Sciences (HICSS), Kauai, HI, Jan. 5-8, 2016.
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