Optimal Participation of an EV Aggregator in Day-Ahead Energy and Reserve Markets

Miguel A. Ortega-Vazquez

Mushfiqur R. Sarker Yury Dvorkin

FERC Software Conference

June 27-29, 2016

UNIVERSITY of WASHINGTON

Ortega-Vazquez et al. (EE UW)

EV Aggregator: Energy & Reserve

June 27-29, 2016 1 / 21

Overview

Introduction

- 2 Aggregator as a market participant
 - Aggregator's perspective
 - EVs' respective

Proposed approach

- Solution process
- Mathematical model

Case Study

- Test system
- Results

Conclusions

3

< ∃ >

- Power systems are forever changing:
 - Minimize operating costs
 - Maintain reliable supply
 - Maximize penetration of emission-free generation

3

▶ < ∃ >

A 🖓

- Power systems are forever changing:
 - Minimize operating costs
 - Maintain reliable supply
 - Maximize penetration of emission-free generation
- De-carbonization of the road transport sector

- Power systems are forever changing:
 - Minimize operating costs
 - Maintain reliable supply
 - Maximize penetration of emission-free generation
- De-carbonization of the road transport sector
- Electric vehicles' (EVs) batteries are poised as excellent candidates to provide services:
 - Energy arbitrage (locally or at a system level)
 - Ancillary services (different regulation intervals)

- Power systems are forever changing:
 - Minimize operating costs
 - Maintain reliable supply
 - Maximize penetration of emission-free generation
- De-carbonization of the road transport sector
- Electric vehicles' (EVs) batteries are poised as excellent candidates to provide services:
 - Energy arbitrage (locally or at a system level)
 - Ancillary services (different regulation intervals)
- EV Aggregation:
 - As individuals, they cannot participate in wholesale markets (*e.g.* PJM 1 MW minimum capacity)
 - Operation of EVs as an ensemble: coordinated response

・ロット 御 とう きょう とうせい

EVs aggregation

- Coordination between the system operator (SO) and EV owners
 - SO seeks to minimize operating cost
 - Aggregator seeks to maximize profits
 - EV owner seek to minimize cost of consuming electricity while receiving compensation for providing services

通 ト イ ヨ ト イ ヨ ト

EVs aggregation

• Coordination between the system operator (SO) and EV owners

- SO seeks to minimize operating cost
- Aggregator seeks to maximize profits
- EV owner seek to minimize cost of consuming electricity while receiving compensation for providing services
- In this framework, aggregator optimally schedules the EV fleets considering:
 - EV transportation needs (e.g. motion needs, range anxiety, etc.)
 - EV battery degradation for market participation
 - Participation into competitive energy and reserve markets

(4) 周 ト 4 日 ト 4 日 ト - 日

Which Markets?

- Energy market:
 - $\bullet\,$ Expectation of energy prices and schedules EVs G2V & V2G

Which Markets?

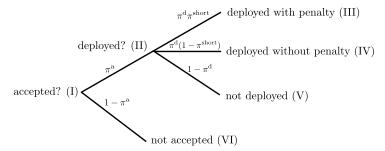
- Energy market:
 - $\bullet\,$ Expectation of energy prices and schedules EVs G2V & V2G
- Voluntary up reserves¹
 - Competitive reserve provider
 - Expected revenue obtained in the day-ahead (DA) as a capacity payment for being on-stand by
 - Expected revenue obtained in real-time (RT) for deployment (if called by the SO)

Which Markets?

- Energy market:
 - $\bullet\,$ Expectation of energy prices and schedules EVs G2V & V2G
- Voluntary up reserves¹
 - Competitive reserve provider
 - Expected revenue obtained in the day-ahead (DA) as a capacity payment for being on-stand by
 - Expected revenue obtained in real-time (RT) for deployment (if called by the SO)
- Voluntary down reserves:
 - Similar to the up reserve market
 - No deployment payment

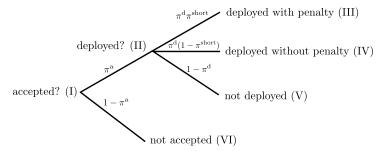
¹Regulating Reserve Service (Up & Down) in the ERCOT market considered \triangleleft \square \triangleright

Aggregator's expectations


• The aggregators need to explicitly account for the probability (π) of having their bids/offers accepted

3

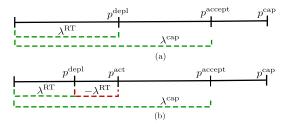
伺 ト イ ヨ ト イ ヨ ト


Aggregator's expectations

- The aggregators need to explicitly account for the probability (π) of having their bids/offers accepted
- Embed the aggregator's probability of market outcome into the decision-making process:

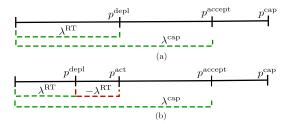
Aggregator's expectations

- The aggregators need to explicitly account for the probability (π) of having their bids/offers accepted
- Embed the aggregator's probability of market outcome into the decision-making process:


• Determine the bids/offers for the DA clearing process based on expected outcomes (including deployment in RT)

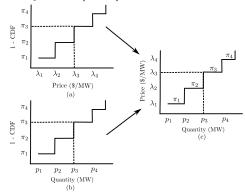
Over- and under-committing

 \bullet The aggregators creates an expectation of the amount of energy that could be called upon $(p^{\rm depl})$


Over- and under-committing

- The aggregators creates an expectation of the amount of energy that could be called upon $(p^{\rm depl})$
- In RT, the aggregators' expectation might be short or long:

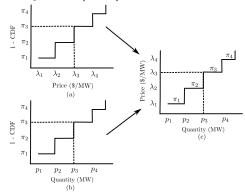
Over- and under-committing


- The aggregators creates an expectation of the amount of energy that could be called upon $(p^{\rm depl})$
- In RT, the aggregators' expectation might be short or long:

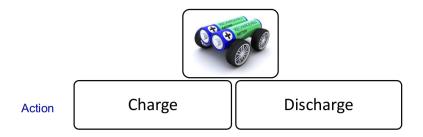
• The penalty could be adjusted to avoid over-commitments

Probabilities curves

• Use historical data from market to populate and create Probability-Quantity-Price (PQP) curves:

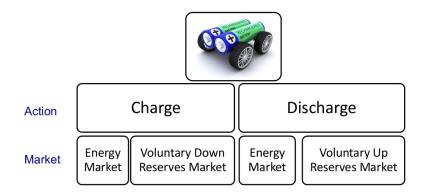


э


SQR

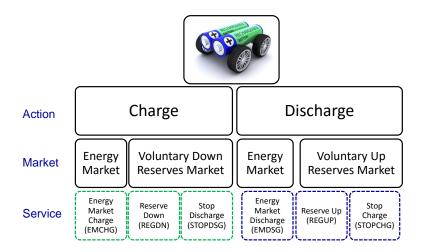
Probabilities curves

• Use historical data from market to populate and create Probability-Quantity-Price (PQP) curves:


- Uses probabilities to determine bidding strategy in markets:
 - Probability of acceptance (π^a)
 - Probability of deployment (π^d)

3

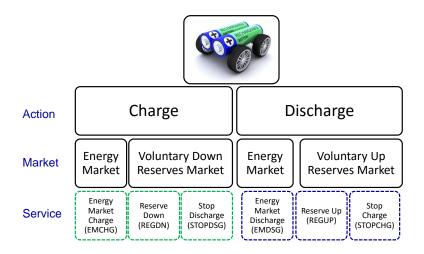
590


イロト イボト イヨト イヨト

э

DQC

< 回 > < 三 > < 三 >



Ortega-Vazquez et al. (EE UW)

DQC

3

A D N A B N A B N A B N

• Optimal scheduling of these services to maximize profits

Ortega-Vazquez et al. (EE UW)

June 27-29, 2016 9 / 21

3

< ∃⇒

Steps:

1) Aggregator performs DA optimization to determine bids/offers in the energy and reserve markets

²H. Pandžić, Y. Dvorkin, Y. Wang, T. Qiu and D. S. Kirschen, "Effect of time resolution on unit commitment decisions in systems with high wind penetration," 2014 IEEE PES General Meeting, National Harbor, MD, 2014, pp. 1-5, E & E O Q C

Steps:

- 1) Aggregator performs DA optimization to determine bids/offers in the energy and reserve markets
- 2) Aggregator sends bids/offers to the SO/MO

²H. Pandžić, Y. Dvorkin, Y. Wang, T. Qiu and D. S. Kirschen, "Effect of time resolution on unit commitment decisions in systems with high wind penetration," 2014 IEEE PES General Meeting, National Harbor, MD, 2014, pp. 1-5, E S. C. S. S. C. S. C. S. C. S.

Steps:

- 1) Aggregator performs DA optimization to determine bids/offers in the energy and reserve markets
- 2) Aggregator sends bids/offers to the SO/MO
- 3) SO/MO clears simultaneous energy and reserves markets²
 - Accepts bids/offers of participants to attain minimum cost
 - Determines energy and reserve clearing prices
 - Aggregator is notified of accepted bids/offers

²H. Pandžić, Y. Dvorkin, Y. Wang, T. Qiu and D. S. Kirschen, "Effect of time resolution on unit commitment decisions in systems with high wind penetration," 2014 IEEE PES General Meeting, National Harbor, MD, 2014, pp 1-5: 🚊 🔌 🤤 🔊 🔍 🔿

Steps:

- 1) Aggregator performs DA optimization to determine bids/offers in the energy and reserve markets
- 2) Aggregator sends bids/offers to the SO/MO
- 3) SO/MO clears simultaneous energy and reserves markets²
 - Accepts bids/offers of participants to attain minimum cost
 - Determines energy and reserve clearing prices
 - Aggregator is notified of accepted bids/offers
- 4) In RT, SO re-dispatches to accommodate deviations
 - Aggregator may be called upon to deploy reserves

²H. Pandžić, Y. Dvorkin, Y. Wang, T. Qiu and D. S. Kirschen, "Effect of time resolution on unit commitment decisions in systems with high wind penetration," 2014 *IEEE PES General Meeting*, National Harbor, MD, 2014, pp; 1-5, 🚊 🕨 🧵 🔨 Q へ

• Aggregator strives to maximize their profits:

$$\max\left\{r^{\mathrm{em}} + r^{\mathrm{cap}} + r^{\mathrm{depl}} - c^{\mathrm{regup}} - c^{\mathrm{regdn}} - c^{\mathrm{deg}}\right\}$$

³M. A. Ortega-Vazquez, F. Bouffard and V. Silva, "Electric Vehicle Aggregator/System Operator Coordination for Charging Scheduling and Services Procurement," *IEEE Transactions on Power Systems*, Vol. 28, dssue 2, pp. 1806-1815, May 2013. [10], (~

• Aggregator strives to maximize their profits:

$$\max\left\{r^{\mathrm{em}} + r^{\mathrm{cap}} + r^{\mathrm{depl}} - c^{\mathrm{regup}} - c^{\mathrm{regdn}} - c^{\mathrm{deg}}\right\}$$

• Revenues³:

$$r^{\text{em}} = \Delta t \sum_{t \in T} \sum_{v \in V} \lambda_t^{\text{DA}} \left(\eta_v^{\text{dsg}} \cdot p_{t,v}^{\text{emdsg}} - p_{t,v}^{\text{emchg}} \right)$$

³M. A. Ortega-Vazquez, F. Bouffard and V. Silva, "Electric Vehicle Aggregator/System Operator Coordination for Charging Scheduling and Services Procurement," *IEEE Transactions on Power Systems*, Vol. 28, Issue 2, pp. 1806-1815, May 2013. [ut]), (***)

• Aggregator strives to maximize their profits:

$$\max\left\{r^{\rm em} + r^{\rm cap} + r^{\rm depl} - c^{\rm regup} - c^{\rm regdn} - c^{\rm deg}\right\}$$

• Revenues³:

$$r^{\text{em}} = \Delta t \sum_{t \in T} \sum_{v \in V} \lambda_t^{\text{DA}} \left(\eta_v^{\text{dsg}} \cdot p_{t,v}^{\text{emdsg}} - p_{t,v}^{\text{emchg}} \right)$$
$$r^{\text{cap}} = \sum_{t \in T} \sum_{b \in B} \left[\left(w_{t,b}^{\text{up}} \lambda_{t,b}^{\text{up}} \right) \pi^{\text{a}} p_t^{\text{up}} + \left(w_{t,b}^{\text{dn}} \lambda_{t,b}^{\text{dn}} \right) \phi^{\text{a}} p_t^{\text{dn}} \right]$$

³M. A. Ortega-Vazquez, F. Bouffard and V. Silva, "Electric Vehicle Aggregator/System Operator Coordination for Charging Scheduling and Services Procurement," *IEEE Transactions on Power Systems*, Vol. 28, Issue 2, pp. 1806-1815, May 2013. [ut]), (***)

• Aggregator strives to maximize their profits:

$$\max\left\{r^{\rm em} + r^{\rm cap} + r^{\rm depl} - c^{\rm regup} - c^{\rm regdn} - c^{\rm deg}\right\}$$

• Revenues³:

$$r^{\text{em}} = \Delta t \sum_{t \in T} \sum_{v \in V} \lambda_t^{\text{DA}} \left(\eta_v^{\text{dsg}} \cdot p_{t,v}^{\text{emdsg}} - p_{t,v}^{\text{emchg}} \right)$$
$$r^{\text{cap}} = \sum_{t \in T} \sum_{b \in B} \left[\left(w_{t,b}^{\text{up}} \lambda_{t,b}^{\text{up}} \right) \pi^{\text{a}} p_t^{\text{up}} + \left(w_{t,b}^{\text{dn}} \lambda_{t,b}^{\text{dn}} \right) \phi^{\text{a}} p_t^{\text{dn}} \right]$$
$$r^{\text{depl}} = \pi^{\text{a}} \pi^{\text{d}} \eta^{\text{dsg}} \sum_{t \in T} \sum_{v \in V} \sum_{b \in B} \left(v_{t,b}^{\text{up}} \lambda_{t,b}^{\text{RT}} \right) \left(e_{t,v}^{\text{regup}} + \frac{1}{\eta^{\text{dsg}}} e_{t,v}^{\text{stopdsg}} \right)$$

Y

³M. A. Ortega-Vazquez, F. Bouffard and V. Silva, "Electric Vehicle Aggregator/System Operator Coordination for Charging Scheduling and Services Procurement," *IEEE Transactions on Power Systems*, Vol. 28, Issue 2, pp. 1806-1815, May 2013. [ut]), (***)

• Costs:

$$c^{\text{regup}} = \pi^{\mathbf{a}} \pi^{\mathbf{d}} \pi^{\text{short}} \sum_{t \in T} \sum_{b \in B} \left(v_{t,b}^{\text{up}} \lambda_{t,b}^{\text{RT}} \right) \left(p_t^{\text{up}} - \pi^{\mathbf{a}} \pi^{\mathbf{d}} p_t^{\text{up}} \right)$$

⁴M. A. Ortega-Vazquez, "Optimal Scheduling of Electric Vehicle Charging and Vehicle-to-Grid Services at Household Level Including Battery Degradation and Price Uncertainty," *IET Generation, Transmission & Distribution*, Vol.8, Issue 6, pp. 1007–1016. Jun. 2014. [url]

Mathematical model

Aggregator Model

• Costs:

$$c^{\text{regup}} = \pi^{a} \pi^{d} \pi^{\text{short}} \sum_{t \in T} \sum_{b \in B} \left(v_{t,b}^{\text{up}} \lambda_{t,b}^{\text{RT}} \right) \left(p_{t}^{\text{up}} - \pi^{a} \pi^{d} p_{t}^{\text{up}} \right)$$
$$c^{\text{regdn}} = \phi^{a} \phi^{d} \phi^{\text{short}} \sum_{t \in T} \sum_{b \in B} \left(v_{t,b}^{\text{dn}} \lambda_{t,b}^{\text{RT}} \right) \left(p_{t}^{\text{dn}} - \phi^{a} \phi^{d} p_{t}^{\text{dn}} \right)$$

⁴M. A. Ortega-Vazquez, "Optimal Scheduling of Electric Vehicle Charging and Vehicle-to-Grid Services at Household Level Including Battery Degradation and Price Uncertainty," *IET Generation, Transmission & Distribution*, Vol.8, Issue 6, pp. 1007–1016. Jun. 2014. [url]

• Costs:

$$c^{\text{regup}} = \pi^{\mathbf{a}} \pi^{\mathbf{d}} \pi^{\text{short}} \sum_{t \in T} \sum_{b \in B} \left(v_{t,b}^{\text{up}} \; \lambda_{t,b}^{\text{RT}} \right) \left(p_t^{\text{up}} - \pi^{\mathbf{a}} \pi^{\mathbf{d}} p_t^{\text{up}} \right)$$

$$c^{\text{regdn}} = \phi^{a} \phi^{d} \phi^{\text{short}} \sum_{t \in T} \sum_{b \in B} \left(v_{t,b}^{\text{dn}} \lambda_{t,b}^{\text{RT}} \right) \left(p_{t}^{\text{dn}} - \phi^{a} \phi^{d} p_{t}^{\text{dn}} \right)$$

$$c^{\text{deg}} = \sum_{v \in V} C_v^{\text{bat}} \left| \frac{m_v}{100} \right| \left[\frac{\Delta t \sum_{t \in T} \left(p_{t,v}^{\text{emdsg}} + p_{t,v}^{\text{emchg}} \right) - \xi_v}{BC_v} + \frac{\sum_{t \in T} \left(\pi^a e_{t,v}^{\text{regup}} + \phi^a e_{t,v}^{\text{regdn}} \right)}{BC_v} \right]$$

 $\{c^{\text{deg}}\}^4$

⁴ M. A. Ortega-Vazquez, "Optimal Scheduling of Electric Vehicle Charging and Vehicle-to-Grid Services at Household Level Including Battery Degradation and Price Uncertainty," *IET Generation, Transmission & Distribution*, Vol.8, Issue 6, pp. 1007–1016, Jun. 2014. [url]

Constraints

• EVs' constraints:

- Minimum energy for motion requirements (ξ_v)
- State-of-charge (SoC) dynamics
- Minimum/maximum SoC (battery preservation)
- Charging and discharging rates
- EVs' availabilities

⁵M. R. Sarker, Y. Dvorkin and M. A. Ortega-Vazquez, "Optimal Participation of an Electric Vehicle Aggregator in Day-Ahead Energy and Reserve Markets," *IEEE Transactions on Power Systems*, Vol. PP, Issue 99, pp. XX, 2106, (early access). [url]

Constraints

• EVs' constraints:

- Minimum energy for motion requirements (ξ_v)
- State-of-charge (SoC) dynamics
- Minimum/maximum SoC (battery preservation)
- Charging and discharging rates
- EVs' availabilities
- Aggregator's constraints⁵:
 - Additional energy requirements for service procurement
 - Aggregated bids/offers for energy markets
 - PQP curve constraints

⁵M. R. Sarker, Y. Dvorkin and M. A. Ortega-Vazquez, "Optimal Participation of an Electric Vehicle Aggregator in Day-Ahead Energy and Reserve Markets," *IEEE Transactions on Power Systems*, Vol. PP, Issue 99, pp. XX, 2106, (early access). [url]

Constraints

• EVs' constraints:

- Minimum energy for motion requirements (ξ_v)
- State-of-charge (SoC) dynamics
- Minimum/maximum SoC (battery preservation)
- Charging and discharging rates
- EVs' availabilities
- Aggregator's constraints⁵:
 - Additional energy requirements for service procurement
 - Aggregated bids/offers for energy markets
 - PQP curve constraints

⁵M. R. Sarker, Y. Dvorkin and M. A. Ortega-Vazquez, "Optimal Participation of an Electric Vehicle Aggregator in Day-Ahead Energy and Reserve Markets," *IEEE Transactions on Power Systems*, Vol. PP, Issue 99, pp. XX, 2106, (early access). [url]

Test system

Case study

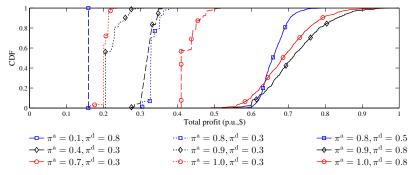
- Aggregator:
 - Fleet of 1000 EVs with driving patterns from the 2009 NHTS
 - Average battery capacity (B_v) of 24 kWh
 - $0.15 \cdot B_v \leq eSoC_{t,v} \leq 0.95 \cdot B_v$ and random $eSoC_0$
 - Battery degradation characteristic from A123⁶
 - V2G & G2V $\in [0, 3.3]$ kW and $\eta_{\rm B} = 90\%$

⁶A123. 'AMP20 Lithium Ion Prismatic Cell.' Available at: http://www.a123systems.com/prismatic-cell-amp20.htm

Case study

- Aggregator:
 - Fleet of 1000 EVs with driving patterns from the 2009 NHTS
 - Average battery capacity (B_v) of 24 kWh
 - $0.15 \cdot B_v \leq eSoC_{t,v} \leq 0.95 \cdot B_v$ and random $eSoC_0$
 - Battery degradation characteristic from A123⁶
 - V2G & G2V $\in [0,3.3]$ kW and $\eta_{\rm R} = 90\%$
- System:
 - 10-step PQP curves created using historical data from ERCOT for the energy and reserve markets, assuming $\pi=\phi$
 - Modified IEEE RTS-96 three-area system (13620 MW), with 3 wind farms (2400 MW)
 - Optimization horizon of 24 h

⁶A123, 'AMP20 Lithium Ion Prismatic Cell.' Available at: http://www.a123systems.com/prismatic-cell-amp20.htm 🔊 🤉 🖓

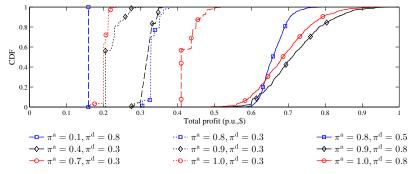

Case study

- Aggregator:
 - Fleet of 1000 EVs with driving patterns from the 2009 NHTS
 - Average battery capacity (B_v) of 24 kWh
 - $0.15 \cdot B_v \leq eSoC_{t,v} \leq 0.95 \cdot B_v$ and random $eSoC_0$
 - Battery degradation characteristic from A123⁶
 - V2G & G2V $\in [0,3.3] \; {\rm kW}$ and $\eta_{\rm R} = 90\%$
- System:
 - 10-step PQP curves created using historical data from ERCOT for the energy and reserve markets, assuming $\pi=\phi$
 - Modified IEEE RTS-96 three-area system (13620 MW), with 3 wind farms (2400 MW)
 - Optimization horizon of 24 h
- MILP solved in GAMS using CPLEX

⁶A123, 'AMP20 Lithium Ion Prismatic Cell.' Available at: http://www.a123systems.com/prismatic-cell-amp20.htm 🔊 Q (

Probability of acceptance/deployment ($\pi^{ m a}/\pi^{ m d}$)

- Monte Carlo (MC) simulations for wind and load scenarios
- Exploration of all combinations of $\{\pi^a,\,\pi^d\}$
- Total profits for each combination are compared


3

<日本

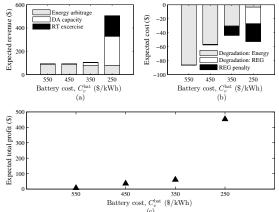
<</p>

Results

Probability of acceptance/deployment ($\pi^{\rm a}/\pi^{\rm d})$

- Monte Carlo (MC) simulations for wind and load scenarios
- Exploration of all combinations of $\{\pi^a\text{, }\pi^d\}$
- Total profits for each combination are compared

• $\pi^{\mathrm{a}}=0.9$ and $\pi^{\mathrm{d}}=0.8$, yield the largest profits (CDF)

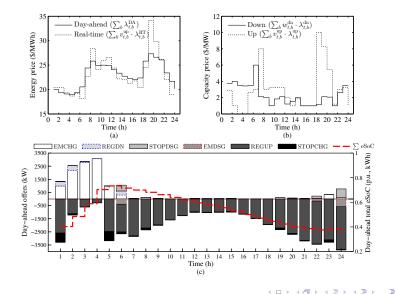

3

글 🖌 🖌 글 🕨

Results

Cost/Benefit analysis

Battery cost sensitivity over {500, 450, 350, 250} \$/kWh •


• At high BC_n the difference in energy market prices is attractive

• At low BC_v the degradation costs for participation in regulation are 'affordable'

Ortega-Vazquez et al. (EE UW)

Results

Offering strategy

590

Benefits to the system

• Can EV participation aid the power system?

		Base	Energy Market	Regulation and Energy Market
RT	Total costs $(10^6 \ \$)$	2.436	2.435	2.433
	Standard deviation of costs(\$)	32,755	32,690	32,282
	Start-up costs (\$)	4,521	4,490	3,940
DA	Start-up costs (\$)	163,780	162,800	152,020

SYSTEM OPERATOR'S COSTS

- With EV participation, total system costs decrease
- Decrease in the start-up costs show less cycling of conventional generation occurs in both the day-ahead and real-time

Ortega-Vazquez et al. (EE UW)

글 🖌 🖌 글 🕨

< (17) × <

Conclusions

- Aggregators are required mediators between EV owners and SO
- Offer new streams of competitive services to the power system
- Proposed probabilistic framework for optimal participation in energy and reserve markets, influenced by:
 - Market structure (*i.e.* revenues and costs)
 - EVs' battery degradation
 - Expectations of bids/offers acceptance and deployment in the different markets
- Mutually beneficial for all players (*i.e.* SO, Aggregator, EV owners)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Conclusions

- The participation on the different markets is highly dependent on the battery cost (*BC_v*):
 - $\bullet\,$ At high BC_v the difference in energy market prices might be attractive
 - At low BC_v the degradation costs for participation in regulation are 'affordable'
- Up reserve provision profitable due to two revenue streams: capacity and deployment
 - Arbitrage is performed between markets, i.e.
 - Energy is purchased during low-price periods
 - Then, scheduled for up reserves

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Source

- This presentation is based on:
 - M. R. Sarker, Y. Dvorkin and M. A. Ortega-Vazquez, "Optimal Participation of an Electric Vehicle Aggregator in Day-Ahead Energy and Reserve Markets," *IEEE Transactions on Power Systems*, Vol. PP, Issue 99, pp. XX, 2106, (early access).

▶ < ∃ ▶</p>

Source

- This presentation is based on:
 - M. R. Sarker, Y. Dvorkin and M. A. Ortega-Vazquez, "Optimal Participation of an Electric Vehicle Aggregator in Day-Ahead Energy and Reserve Markets," *IEEE Transactions on Power Systems*, Vol. PP, Issue 99, pp. XX, 2106, (early access).
- Acknowledgment:
 - This work was supported in part by the National Science Foundation (NSF) under Grant No. 1239408
 - In part also by the University of Washington's Clean Energy Institute (CEI) [url]

