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Introduction

Introduction

Power systems are forever changing:
Minimize operating costs
Maintain reliable supply
Maximize penetration of emission-free generation

De-carbonization of the road transport sector

Electric vehicles’ (EVs) batteries are poised as excellent candidates to
provide services:

Energy arbitrage (locally or at a system level)
Ancillary services (different regulation intervals)

EV Aggregation:
As individuals, they cannot participate in wholesale markets (e.g. PJM
1 MW minimum capacity)
Operation of EVs as an ensemble: coordinated response
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Introduction

EVs aggregation

Coordination between the system operator (SO) and EV owners
SO seeks to minimize operating cost
Aggregator seeks to maximize profits
EV owner seek to minimize cost of consuming electricity while receiving
compensation for providing services

In this framework, aggregator optimally schedules the EV fleets
considering:

EV transportation needs (e.g. motion needs, range anxiety, etc.)
EV battery degradation for market participation
Participation into competitive energy and reserve markets
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Aggregator as a market participant Aggregator’s perspective

Which Markets?

Energy market:
Expectation of energy prices and schedules EVs G2V & V2G

Voluntary up reserves1

Competitive reserve provider
Expected revenue obtained in the day-ahead (DA) as a capacity
payment for being on-stand by
Expected revenue obtained in real-time (RT) for deployment (if called
by the SO)

Voluntary down reserves:
Similar to the up reserve market
No deployment payment

1Regulating Reserve Service (Up & Down) in the ERCOT market considered
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Aggregator as a market participant Aggregator’s perspective

Aggregator’s expectations

The aggregators need to explicitly account for the probability (π) of
having their bids/offers accepted

Embed the aggregator’s probability of market outcome into the
decision-making process:

Determine the bids/offers for the DA clearing process based on
expected outcomes (including deployment in RT)
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Aggregator as a market participant Aggregator’s perspective

Over- and under-committing

The aggregators creates an expectation of the amount of energy that
could be called upon (pdepl)

In RT, the aggregators’ expectation might be short or long:

The penalty could be adjusted to avoid over-commitments
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Aggregator as a market participant Aggregator’s perspective

Probabilities curves

Use historical data from market to populate and create
Probability-Quantity-Price (PQP) curves:

Uses probabilities to determine bidding strategy in markets:
Probability of acceptance (πa)
Probability of deployment (πd)
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Aggregator as a market participant EVs’ respective

EV participation modes

Optimal scheduling of these services to maximize profits
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Proposed approach Solution process

Solution process

Steps:

1) Aggregator performs DA optimization to determine bids/offers in the
energy and reserve markets

2) Aggregator sends bids/offers to the SO/MO

3) SO/MO clears simultaneous energy and reserves markets2

Accepts bids/offers of participants to attain minimum cost
Determines energy and reserve clearing prices
Aggregator is notified of accepted bids/offers

4) In RT, SO re-dispatches to accommodate deviations
Aggregator may be called upon to deploy reserves

2H. Pandžić, Y. Dvorkin, Y. Wang, T. Qiu and D. S. Kirschen, “Effect of time resolution on unit commitment decisions in
systems with high wind penetration,” 2014 IEEE PES General Meeting, National Harbor, MD, 2014, pp. 1-5.
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Proposed approach Mathematical model

Aggregator’s Model

Aggregator strives to maximize their profits:

max
{
rem + rcap + rdepl − cregup − cregdn − cdeg

}

Revenues3:

rem = ∆t
∑
t∈T

∑
v∈V

λDA
t

(
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)
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(
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)
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t

]

rdepl = πaπdηdsg∑
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∑
v∈V

∑
b∈B

(
vup

t,b λ
RT
t,b

)(
eregup

t,v + 1
ηdsg e

stopdsg
t,v

)

3M. A. Ortega-Vazquez, F. Bouffard and V. Silva, “Electric Vehicle Aggregator/System Operator Coordination for Charging
Scheduling and Services Procurement,” IEEE Transactions on Power Systems, Vol. 28, Issue 2, pp. 1806-1815, May 2013. [url]
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Proposed approach Mathematical model

Aggregator Model

Costs:
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4M. A. Ortega-Vazquez, “Optimal Scheduling of Electric Vehicle Charging and Vehicle-to-Grid Services at Household Level
Including Battery Degradation and Price Uncertainty,” IET Generation, Transmission & Distribution, Vol.8 , Issue 6, pp.
1007–1016, Jun. 2014. [url]
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Proposed approach Mathematical model

Constraints

EVs’ constraints:
Minimum energy for motion requirements (ξv)
State-of-charge (SoC) dynamics
Minimum/maximum SoC (battery preservation)
Charging and discharging rates
EVs’ availabilities

Aggregator’s constraints5:
Additional energy requirements for service procurement
Aggregated bids/offers for energy markets
PQP curve constraints

5M. R. Sarker, Y. Dvorkin and M. A. Ortega-Vazquez, “Optimal Participation of an Electric Vehicle Aggregator in
Day-Ahead Energy and Reserve Markets,” IEEE Transactions on Power Systems, Vol. PP, Issue 99, pp. XX, 2106, (early
access). [url]
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Case Study Test system

Case study

Aggregator:
Fleet of 1000 EVs with driving patterns from the 2009 NHTS
Average battery capacity (Bv) of 24 kWh
0.15·Bv ≤ eSoCt,v ≤ 0.95·Bv and random eSoC0
Battery degradation characteristic from A1236

V2G & G2V ∈ [0, 3.3] kW and ηR = 90%

System:
10-step PQP curves created using historical data from ERCOT for the
energy and reserve markets, assuming π = φ
Modified IEEE RTS-96 three-area system (13620 MW), with 3 wind
farms (2400 MW)
Optimization horizon of 24 h

MILP solved in GAMS using CPLEX

6A123, ‘AMP20 Lithium Ion Prismatic Cell.’ Available at: http://www.a123systems.com/prismatic-cell-amp20.htm
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Case Study Results

Probability of acceptance/deployment (πa/πd)

Monte Carlo (MC) simulations for wind and load scenarios
Exploration of all combinations of {πa, πd}
Total profits for each combination are compared
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Case Study Results

Cost/Benefit analysis

Battery cost sensitivity over {500, 450, 350, 250} $/kWh
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Case Study Results

Offering strategy
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Case Study Results

Benefits to the system

Can EV participation aid the power system?

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
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TABLE I
SYSTEM OPERATOR'S COSTS

(37.9%) with a deviation of 0.24 MW (22.1%) was deployed in
the RT. The aggregator favors up regulation because it allows
both the capacity and exercise revenues to be obtained. Major
reasons for lower quantities of down regulation is caused by
the aggregator's commitment to procuring energy for transporta-
tion, which limits the EV fleets capacity for additional charging
for down regulation, and also because only the capacity rev-
enue can be obtained. On the other hand, STOPDSG portion
of down regulation can only be activated if energy market dis-
charging (EMDSG) occurs. However, because REGUP services
are profitable, this limits EMDSG from occurring often and so
STOPDSG is limited.
For purposes of simplicity, it was assumed the probabilities

of acceptance and deployment were equal, i.e. and
. Different values, however, can be chosen for the

down regulation which better resemble the outcome of Fig. 7(b).
At the same time, this also shows the SO requires less down
regulation.

D. System Operator's Perspective
Table I uses the MC trials to show the SO's expected oper-

ating cost, standard deviation of cost, and the startup cost of
committing additional units in the RT, which is compared to the
cost of DA commitments. The base case in Table I presents the
costs in the power system without the aggregator. Next, the case
when the aggregator participates in energy markets only and fi-
nally, the case when aggregator partakes in both markets. From
Table I, the SO's expected costs in the RT are reduced when
the aggregator provides services to the grid. Also, the startup
costs in the DA and RT decrease. Even though the total quan-
titative cost savings seem low, e.g. 0.08% when the aggregator
participates in energy market and 0.12% when performing in
both markets the qualitative benefits are of importance [34], and
these would be mirrored as large amounts of money over an op-
erating year.
The decrease in the start-up costs shows that less cycling of

conventional generation occurs in both the DA and RT [35]. Es-
pecially in the RT, the lower start-up costs indicate the SO re-
quires less fast-starting units to be on stand-by in the case of
deviations. This follows because the aggregator obtains energy
when there is an abundance and less need for deployment, and
then supplies it when there is a need, thus making it a viable
alternative to conventional generation for reserve provision. As
compared to the conventional generation, the aggregator has es-
sentially no startup costs and also has lower operating costs,

which only include the compensation of the battery degradation
to the EVs owners.

V. CONCLUSION
Electric Vehicle (EV) aggregators are the required mediators

between large fleets of EVs and the power system operators.
EVs can provide a new stream of services to the power system,
however in order to incentivize the EVs' participation in energy
and reserve markets, a fair compensation mechanism must in
place to reimburse for degrading batteries beyond their primary
purpose of transportation. This work proposes a framework to
determine the optimal aggregator’s bidding strategy in the en-
ergy and regulation reserve markets, which maximizes the ag-
gregator's profits while observing the incurred loss of utility for
the EV batteries. In this framework, the aggregator optimizes
its strategy as a risk-averse, profit-seeking entity in a competi-
tive energy and reserve market, while considering its expected
probability of acceptances and probability of deployments for
up and down regulation.
Results show that the aggregator benefits from the reserve

market more than the energy market for two main reasons: 1) it
collects capacity revenue for providing regulation, which does
not incur degradation, and 2) it gains additional revenue if re-
quired to deploy in the real-time. By comparing the total rev-
enues with battery costs as of 2012 to costs in the future, the
aggregator would obtain a substantial increase in revenue and
at the same time would reduce significantly the power system
operating costs. This is the case because as the cost of the bat-
tery decreases, using the EVs as storage and reserve providers
becomes profitable. When the battery costs are high, most of the
revenue is obtained from the energy market, however, with low
battery costs most of the revenues come from regulation reserve
provision. This is because as the battery costs decrease, the pro-
vision of regulating reserve would result into two streams of
revenue: capacity and deployment. The provision of these ser-
vices from EVs is also beneficial to the System Operator, since
it would reduce the total operating costs of the system.

APPENDIX A
LINEARIZATION TECHNIQUE

The multiplication of binary variable and continuous vari-
able renders an optimization problem non-linear. The lin-
earization is performed by introducing a new continuous vari-
able that takes on the resulting value of the multiplication, as
shown in (25):

(25)

In order to linearize (25), the following constraints are needed:

(26)
(27)
(28)

where is a large number. For example, if , then ac-
cording to (28), . However, if , then equation (28)
is non-binding. In addition, in (26), and in (27), ,
and thus is obtained. By using constraints (26)–(28), the
variable can either take on the value of 0 or .

With EV participation, total system costs decrease
Decrease in the start-up costs show less cycling of conventional
generation occurs in both the day-ahead and real-time
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Conclusions

Conclusions

Aggregators are required mediators between EV owners and SO
Offer new streams of competitive services to the power system
Proposed probabilistic framework for optimal participation in energy
and reserve markets, influenced by:

Market structure (i.e. revenues and costs)
EVs’ battery degradation
Expectations of bids/offers acceptance and deployment in the different
markets

Mutually beneficial for all players (i.e. SO, Aggregator, EV owners)
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Conclusions

Conclusions

The participation on the different markets is highly dependent on the
battery cost (BCv):

At high BCv the difference in energy market prices might be attractive
At low BCv the degradation costs for participation in regulation are
‘affordable’

Up reserve provision profitable due to two revenue streams: capacity
and deployment

Arbitrage is performed between markets, i.e.
Energy is purchased during low-price periods
Then, scheduled for up reserves
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