
A Multi-Scale Optimal Control Framework for Electricity Market Participation

Alexander Dowling, PhD with Prof. Victor Zavala

Scalable Systems Laboratory zavalab.engr.wisc.edu

June 29th, 2016

Department of Chemical and Biological Engineering University of Wisconsin-Madison

FERC Meeting: Increasing Market and Planning Efficiency through Improved Software

Motivation: Economics of Industrial Systems Depend on Electricity Markets

Utility Scale Batteries

Commercial/Academic Campuses (District Heating, HVAC)

Aluminum Smelters

Solar Power Plants

Oil Refineries

Air Separation Systems

Key Questions:

Do market price signals sufficiently **incentivize** industrial partition?

Which markets/products are most promising for industrial participation?

How can industrial system **flexibility** be exploited through electricity markets participation?

How does **market design** impact industrial participation?

Presentation Outline

- 1. Overview of California Electricity Markets
- 2. Multi-Scale Optimal Control Framework
- 3. Case Study: Combined Heat and Power Utility System
- 4. Case Study: Battery Storage System
- 5. Conclusions and Future Work

California ISO (CAISO) Electricity Markets

Day-Ahead Market

Integrated Forward Market Energy & Ancillary Services 1 hour intervals

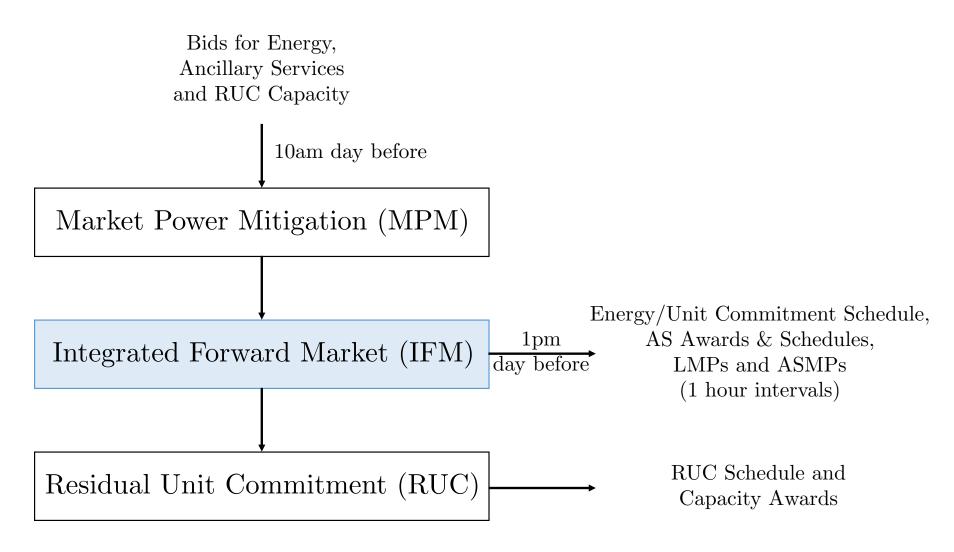
Real-Time Market

Fifteen Minute Market

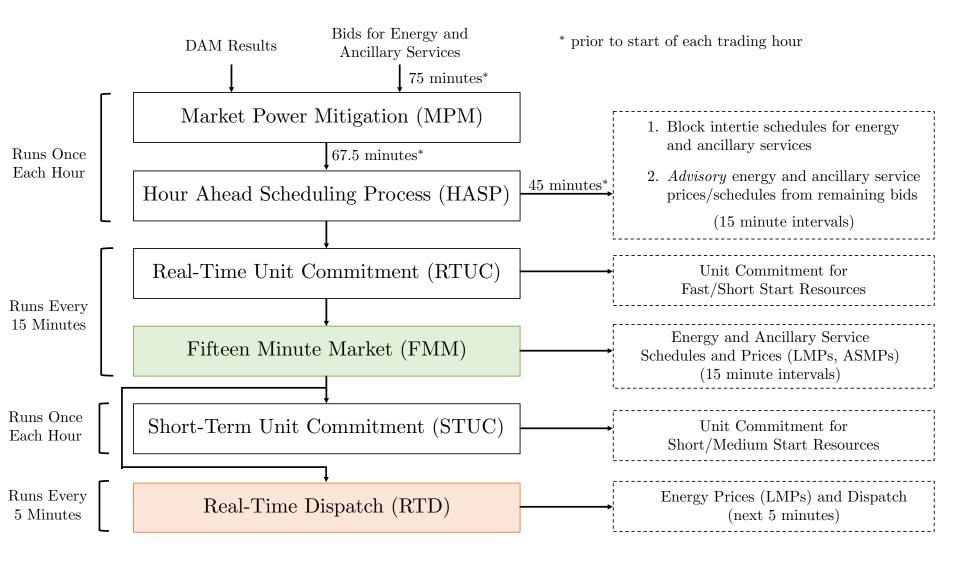
Energy & Ancillary Services 15 minute intervals

Real-Time Dispatch

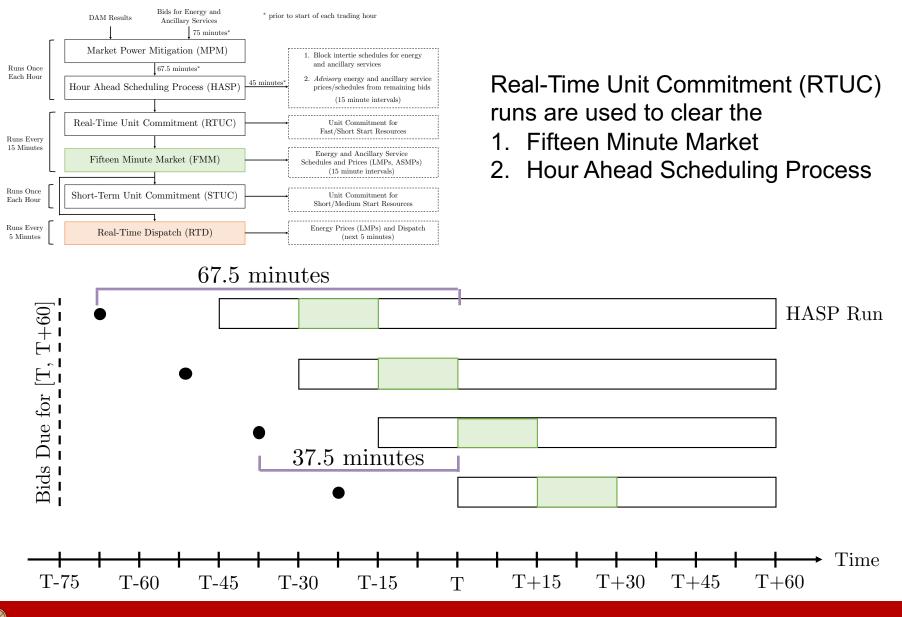
Energy

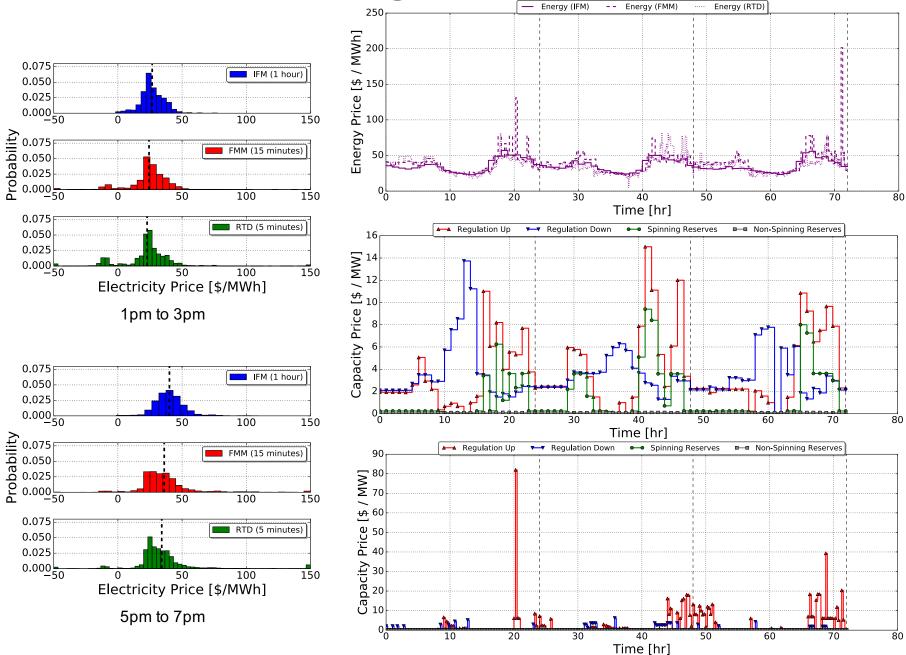

5 minute intervals

Non-Spinning/Spinning Reserves

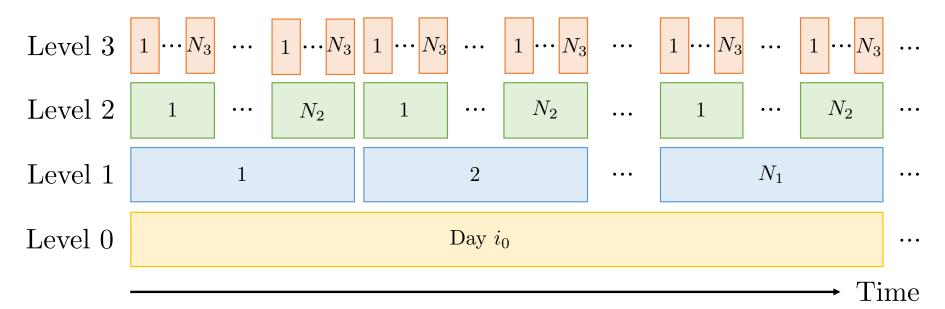


Day-Ahead Market Structure


Real-Time Market Structure



Real-Time Market Timeline


NISCONSIN

Multi-Scale Price Signals

Multi-Scale Mathematical Model

$$\mathcal{T}_{\ell} := \{1, ..., N_{\ell}\} \text{ for } \ell \in \mathcal{L} := \{3, 2, 1, 0\}, \qquad \mathcal{M} := \{3, 2, 1\} \subset \mathcal{L}$$

$$\begin{aligned} \mathcal{T}_{3}^{*} &:= \mathcal{T}_{3} \times \mathcal{T}_{2} \times \mathcal{T}_{1} \times \mathcal{T}_{0} \\ &= \{(1,1,1,1), (2,1,1,1), ..., (N_{3},1,1,1), (N_{3},2,1,1), \\ &\dots, (N_{3},N_{2},1,1), ..., (N_{3},N_{2},N_{1},N_{0})\} \\ \mathcal{T}_{2}^{*} &:= \mathcal{T}_{2} \times \mathcal{T}_{1} \times \mathcal{T}_{0} \\ \mathcal{T}_{1}^{*} &:= \mathcal{T}_{1} \times \mathcal{T}_{0} \\ \mathcal{T}_{0}^{*} &= \mathcal{T}_{0} \end{aligned} \qquad \begin{aligned} t_{3}^{*}(t) &= (i_{3},i_{2},i_{1},i_{0}) \in \mathcal{T}_{3}^{*} \\ t_{2}^{*}(t) &= (i_{2},i_{1},i_{0}) \in \mathcal{T}_{2}^{*} \\ t_{1}^{*}(t) &= (i_{1},i_{0}) \in \mathcal{T}_{1}^{*} \\ t_{0}^{*}(t) &= i_{0} \in \mathcal{T}_{0}^{*} \end{aligned}$$

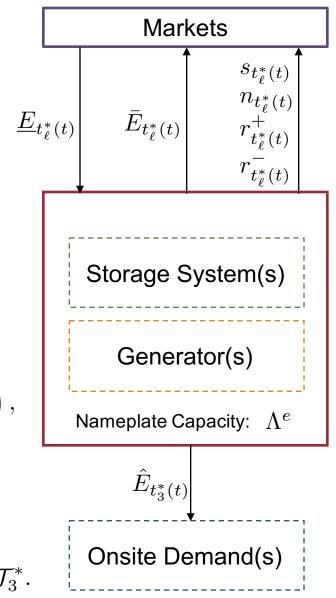
Generalized Model

Net Energy
$$0 \leq \underline{E}_{t_{\ell}^{*}(t)}, \bar{E}_{t_{\ell}^{*}(t)} \leq 1, \quad t_{\ell}^{*}(t) \in \mathcal{T}_{\ell}^{*}$$

 $E_{t_{3}^{*}(t)} = \sum_{\ell \in \mathcal{M}} \left(\bar{E}_{t_{\ell}^{*}(t)} - \underline{E}_{t_{\ell}^{*}(t)} + \hat{E}_{t_{\ell}^{*}(t)} \right), \quad t_{3}^{*}(t) \in \mathcal{T}_{3}^{*}$
Ancillary Services

$$0 \leq s_{t_{\ell}^{*}(t)}, n_{t_{\ell}^{*}(t)} \leq 1, \quad \ell \in \mathcal{M}, \quad t_{\ell}^{*}(t) \in \mathcal{T}_{\ell}^{*},$$
$$0 \leq r_{t_{\ell}^{*}(t)}^{+} \leq \rho_{+}^{max}, \quad \ell \in \mathcal{M}, \quad t_{\ell}^{*}(t) \in \mathcal{T}_{\ell}^{*},$$
$$0 \leq r_{t_{\ell}^{*}(t)}^{-} \leq \rho_{-}^{max}, \quad \ell \in \mathcal{M}, \quad t_{\ell}^{*}(t) \in \mathcal{T}_{\ell}^{*}.$$

Energy and Ancillary Service Revenues


$$R_E = \Lambda^e \sum_{t \in \mathcal{T}^*} \sum_{\ell \in \mathcal{M}} \Delta t_\ell \ \pi^{energy}_{t^*_\ell(t)} \left(\bar{E}_{t^*_\ell(t)} - (1+\epsilon) \ \underline{E}_{t^*_\ell(t)} \right)$$

$$R_{AS} = \Lambda^e \sum_{a \in \mathcal{A}} \sum_{t \in \mathcal{T}^*} \sum_{\ell \in \mathcal{M}} \left(\pi^{AS}_{a, t^*_{\ell}(t)} a_{t^*_{\ell}(t)} \right).$$

Ramping Limits

$$e_{\rho_{elec}} \Delta t_3 \leq E_{t_3^*(t)} - E_{t_3^*(t-1)} \leq \rho_{elec} \Delta t_3, \quad t_3^*(t) \in \mathcal{T}_3^*.$$

 $\mathcal{A} := \{s, n, r^+, r^-\}, \quad \ell \in \mathcal{M}$

Multi-Scale Electricity Market Participation

,

Operating Modes for Thermal Generators (1/2)

$$y_{t_1^*(t)}^e, y_{t_1^*(t)}^s, y_{t_1^*(t)}^n \in \{0,1\}^{N_1 \times N_0}, \quad y_{t_1^*(t)}^e + y_{t_1^*(t)}^s + y_{t_1^*(t)}^n \le 1, \quad t_1^*(t) \in \mathcal{T}_1^*$$

Generation Mode: Regulation Capacity

$$\begin{split} \sum_{\ell \in \mathcal{M}} \left(r_{t_{\ell}^{*}(t)}^{+} + r_{t_{\ell}^{*}(t)}^{-} \right) &\leq \rho_{reg}^{max} y_{t_{1}^{*}(t)}^{e}, \quad \sum_{\ell \in \mathcal{M}} \left(r_{t_{\ell}^{*}(t)}^{+} + s_{t_{\ell}^{*}(t)} + n_{t_{\ell}^{*}(t)} \right) \leq \rho_{reg}^{max}, \\ E_{t_{3}^{*}(t)} + \sum_{\ell \in \mathcal{M}} \left(s_{t_{\ell}^{*}(t)} + n_{t_{\ell}^{*}(t)} + r_{t_{\ell}^{*}(t)}^{+} \right) \leq 1, \quad t_{\ell}^{*}(t) \in \mathcal{T}_{\ell}^{*}. \end{split}$$

Generation Mode: Regulation with Onsite Demand

$$x_{t_3^*(t)} \ge 0, \quad x_{t_3^*(t)} \ge \left(\sum_{\ell \in \mathcal{M}} r_{t_\ell^*(t)}^-\right) - \theta_r \hat{E}_{t_3^*(t)}, \quad t_\ell^*(t) \in \mathcal{T}_\ell^*.$$

$$E_{t_3^*(t)} \ge \lambda y_{t_1^*(t)}^e + x_{t_3^*(t)}, \quad t_1^*(t) \in \mathcal{T}_1^*, \quad t_3^*(t) \in \mathcal{T}_3^*.$$

$$\theta_r \hat{E}_{t_3^*(t)} + \sum_{\ell \in \mathcal{M}} \bar{E}_{t_\ell^*(t)} \ge \sum_{\ell \in \mathcal{M}} r_{t_\ell^*(t)}^-, \quad t_\ell^*(t) \in \mathcal{T}_\ell^*.$$

Operating Modes for Thermal Generators (2/2)

 $y_{t_1^*(t)}^e, \ y_{t_1^*(t)}^s, \ y_{t_1^*(t)}^n \in \{0,1\}^{N_1 \times N_0}, \quad y_{t_1^*(t)}^e + y_{t_1^*(t)}^s + y_{t_1^*(t)}^n \le 1, \quad t_1^*(t) \in \mathcal{T}_1^*$

Ramp Rate Relaxation for Start-up/Shutdown

$$\begin{split} I_1(t_3^*(t)) &\in \mathcal{T}_1, \\ z_{t_3^*(t)} &= \rho_{elec} \Delta t_3 + \max(|I_1(t_3^*(t)) - I_1(t_3^*(t-1))|, 1)(1 - \rho_{elec} \Delta t_3)(2 - y_{t_1^*(t)} - y_{t_1^*(t-1)}), \\ &- z_{t_3^*(t)} \leq E_{t_3^*(t)} - E_{t_3^*(t-1)} \leq z_{t_3^*(t)}, \quad t_3^*(t) \in \mathcal{T}_3^*. \end{split}$$

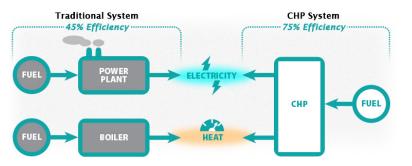
Spinning Reserves

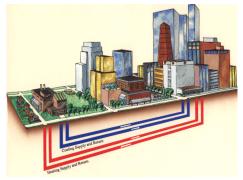
$$\sum_{\ell \in \mathcal{M}} s_{t_{\ell}^{*}(t)} \leq y_{t_{1}^{*}(t)}^{e} + y_{t_{1}^{*}(t)}^{s}, \quad t_{\ell}^{*}(t) \in \mathcal{T}_{\ell}^{*}.$$

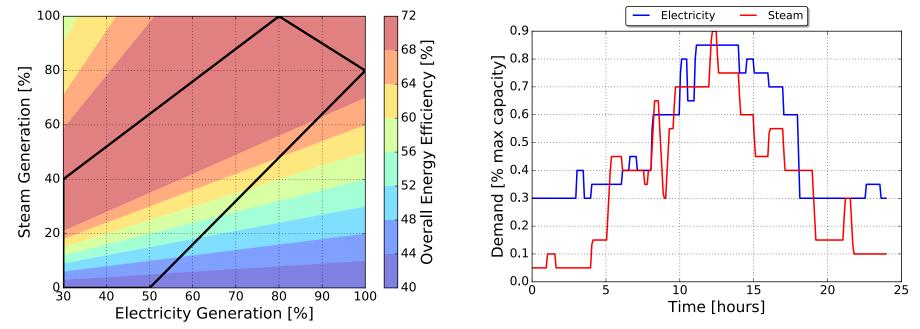
Non-Spinning Reserves

$$\sum_{\ell \in \mathcal{M}} n_{t_{\ell}^{*}(t)} \leq y_{t_{1}^{*}(t)}^{e} + y_{t_{1}^{*}(t)}^{s} + y_{t_{1}^{*}(t)}^{n}, \quad t_{\ell}^{*}(t) \in \mathcal{T}_{\ell}^{*}.$$

Other Energy Systems


Virtual Bidding


$$\bar{E}_{t_1^*(t)} = \underline{E}_{t_2^*(t)}, \quad \underline{E}_{t_1^*(t)} = \bar{E}_{t_2^*(t)}, \quad \bar{E}_{t_3^*(t)} = \underline{E}_{t_3^*(t)} = 0,$$
$$t_1^*(t) \in \mathcal{T}_1^*, \quad t_2^*(t) \in \mathcal{T}_2^*, \quad t_3^*(t) \in \mathcal{T}_3^*.$$


Combined Heat and Power Utility System

Applications: District Heating, Manufacturing Facilities, etc.

What are the **economic incentives** for CHP systems to participate in electricity markets? Are there sufficient incentives to increase the **flexibility of the coupled process(es)**?

Mathematical Model (1/2)

$$0 \le f_{t_3^*(t)}, \quad 0 \le \hat{s}_{t_3^*(t)} \le 1, \quad 0 \le \hat{E}_{t_3^*(t)} \le 1, \quad t_3^*(t) \in \mathcal{T}_3^*.$$

Fuel Consumption (Efficiency)

$$f_{t_{3}^{*}(t)} \geq \frac{\Lambda^{s} \hat{s}_{t_{3}^{*}(t)} + \Lambda^{e} E_{t_{3}^{*}(t)}}{\eta^{total}}, \quad t_{3}^{*}(t) \in \mathcal{T}_{3}^{*}.$$
$$f_{t_{3}^{*}(t)} \geq \frac{\Lambda^{s} \hat{s}_{t_{3}^{*}(t)}}{\eta^{steam}}, \quad t_{3}^{*}(t) \in \mathcal{T}_{3}^{*}.$$
$$f_{t_{3}^{*}(t)} \geq \frac{\Lambda^{e} E_{t_{3}^{*}(t)}}{\eta^{elec}}, \quad t_{3}^{*}(t) \in \mathcal{T}_{3}^{*}.$$

Operating Region

$$\vec{a} \ \hat{s}_{t_3^*(t)} + \vec{b} \ E_{t_3^*(t)} \ge \vec{c}, \quad t_3^*(t) \in \mathcal{T}_3^*.$$

Fuel Cost

$$C_{fuel} = \pi^{fuel} \ \Delta t_3 \sum_{t \in \mathcal{T}^*} f_{t_3^*(t)}.$$

$$\mathcal{A} := \{s, n, r^+, r^-\}, \quad \ell \in \mathcal{M}$$

$$\underbrace{\mathsf{Markets}}_{3}.$$

$$\underline{E}_{t_{\ell}^*(t)} = 0 \quad \overline{E}_{t_{\ell}^*(t)} \qquad \begin{array}{c} s_{t_{\ell}^*(t)} \\ n_{t_{\ell}^*(t)} \\ r_{t_{\ell}^*(t)} \\ r_{t_{\ell}^*(t)} \\ r_{t_{\ell}^*(t)} \\ \end{array}$$

$$\underbrace{f_{t_{3}^*(t)}} \qquad \qquad \mathbf{Generator(s)}$$

Nameplate Capacity:
$$\Lambda^{e}$$
, Λ^{s}
 $\hat{E}_{t_{3}^{*}(t)}$
 $\hat{s}_{t_{3}^{*}(t)}$
Onsite Demands
 $\phi_{t_{3}^{*}(t)}$, $\sigma_{t_{3}^{*}(t)}$

Mathematical Model (2/2)

 $0 \le f_{t_3^*(t)}, \quad 0 \le \hat{s}_{t_3^*(t)} \le 1, \quad 0 \le \hat{E}_{t_3^*(t)} \le 1, \quad t_3^*(t) \in \mathcal{T}_3^*.$

Steam Ramp Rate

 $\begin{aligned} -\Delta t_3 \ \rho_{steam} &\leq \hat{s}_{t_3^*(t)} - \hat{s}_{t_3^*(t-1)} \leq \Delta t_3 \ \rho_{steam}, \\ t_3^*(t) &\in \mathcal{T}_3^*. \end{aligned}$

Onsite Demand Flexibility

 $\phi_{t_3^*(t)}(1-\theta_e) \le \hat{E}_{t_3^*(t)} \le \phi_{t_3^*(t)}(1+\theta_e), \quad t_3^*(t) \in \mathcal{T}_3^*, \\ \sigma_{t_3^*(t)}(1-\theta_s) \le \hat{s}_{t_3^*(t)} \le \sigma_{t_3^*(t)}(1+\theta_s), \quad t_3^*(t) \in \mathcal{T}_3^*.$

$$\sum_{t \in \mathcal{T}: t_0^*(t) = i_0} \left(\hat{E}_{t_3^*(t)} - \phi_{t_3^*(t)} \right) = 0, \quad i_0 \in \mathcal{T}_0^*,$$

$$\sum_{t \in \mathcal{T}: t_0^*(t) = i_0} \left(\hat{s}_{t_3^*(t)} - \sigma_{t_3^*(t)} \right) = 0, \quad i_0 \in \mathcal{T}_0^*.$$

 $\mathcal{A} := \{s, n, r^+, r^-\}, \quad \ell \in \mathcal{M}$

$$\underbrace{\underline{B}}_{t} = 0 \quad \overline{E}_{t_{\ell}^{*}(t)} = 0 \quad \overline{E}_{t_{\ell}^{*}(t)} \quad \begin{array}{c} s_{t_{\ell}^{*}(t)} \\ n_{t_{\ell}^{*}(t)} \\ r_{t_{\ell}^{*}(t)}^{+} \\ r_{t_{\ell}^{*}(t)}^{-} \\ \hline \end{array}$$

$$\underbrace{f_{t_{3}^{*}(t)}}_{\text{Nameplate Capacity: } \Lambda^{e}, \Lambda^{s}} \\ \widehat{E}_{t_{3}^{*}(t)} \quad \widehat{S}_{t_{3}^{*}(t)} \\ \hline \end{array}$$

$$\underbrace{f_{t_{3}^{*}(t)}}_{\text{Onsite Demands}} \\ \phi_{t_{3}^{*}(t)}, \quad \sigma_{t_{3}^{*}(t)} \\ \hline \end{array}$$

Problem Formulation

Minimize (Fuel Cost – Market Revenue)

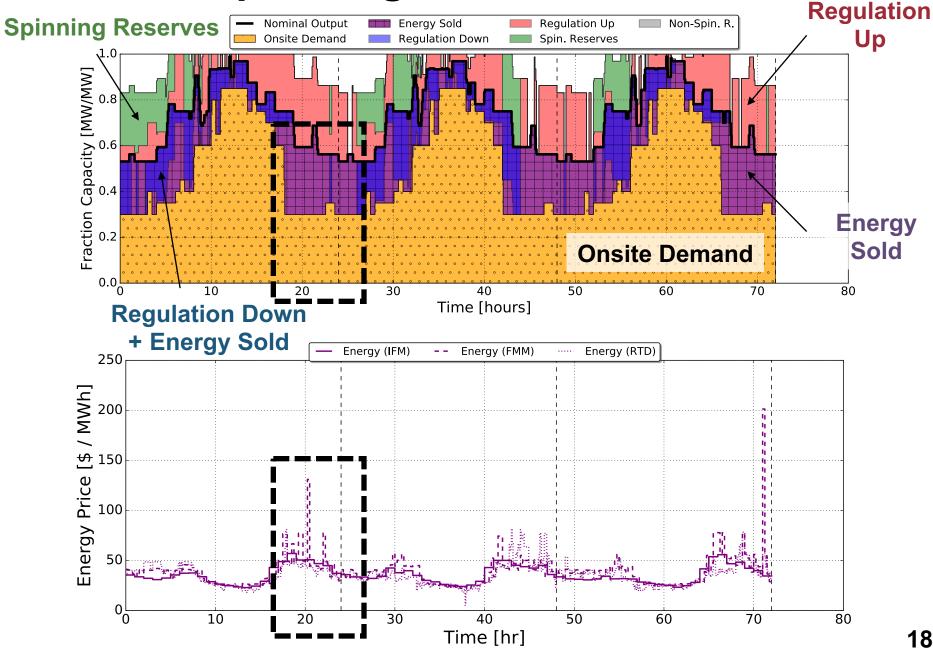
s.t. Electricity Market Model Utility System Model

Input Parameters

$$\begin{split} \Lambda^{e} &= 1 \text{ MW}_{e}, \\ \Lambda^{s} &= 1 \text{ MW}_{t}, \\ \rho_{elec} &= 180 \%/\text{hour}, \\ \rho_{steam} &= 100 \%/\text{hour}, \\ \eta^{total} &= 70\%, \\ \eta^{steam} &= 45\%, \\ \eta^{elec} &= 40\%, \\ \theta_{s} &= \theta_{e} = \theta_{r} = 0, \\ \phi_{t_{3}^{*}(t)}, \sigma_{t_{3}^{*}(t)}, \\ \pi^{fuel} &= 4.0 \ \text{\$/MBtu}, \\ \end{split}$$

<u>Assumptions</u>

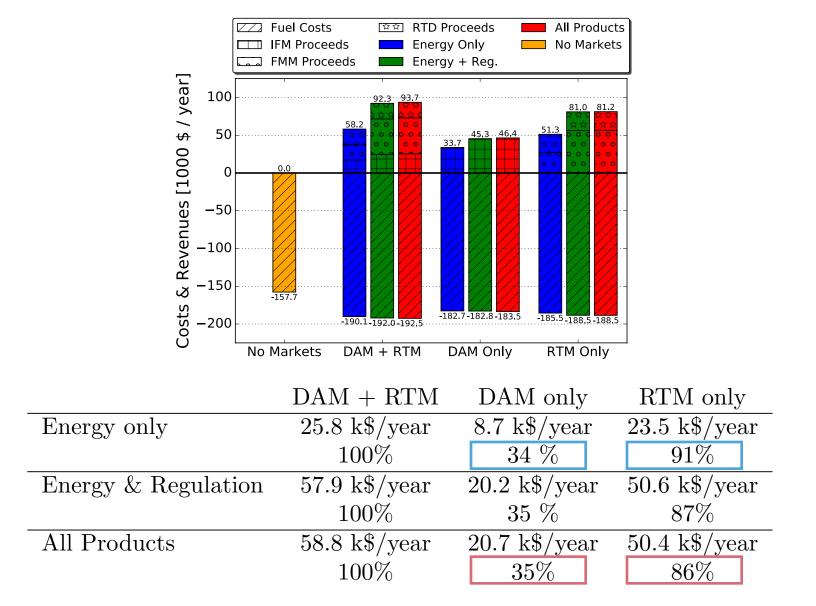
Price-taker, perfect information Always on, $y^e_{t_1^*(t)} = 1 \quad \forall t \in \mathcal{T}$


$\underline{E}_{t_{\ell}^{*}(t)}, \overline{E}_{t_{\ell}^{*}(t)}, E_{t_{3}^{*}(t)}, s_{t_{\ell}^{*}(t)}, n_{t_{\ell}^{*}(t)}, r_{t_{\ell}^{*}(t)}^{+}, r_{t_{\ell}^{*}(t)}^{-}, r_{t_{\ell}^{*}(t)}^{-}, s_{t_{3}^{*}(t)}, \hat{s}_{t_{3}^{*}(t)}, \hat{E}_{t_{3}^{*}(t)}$

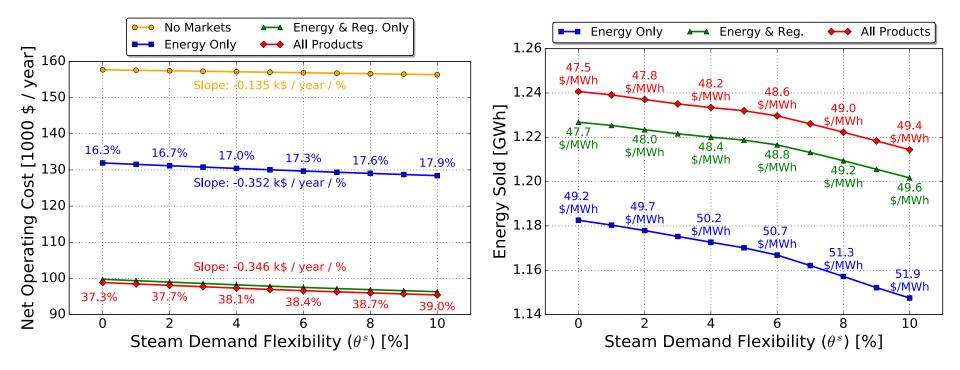
Problem Size

 $N_0 = 365$ days, $\Delta t_3 = 5$ minutes 1.7 to 2.0 million linear constraints 0.6 to 1.0 million continuous variables Gurobi CPU time: 5 to 31 seconds

Results: Operating Profiles

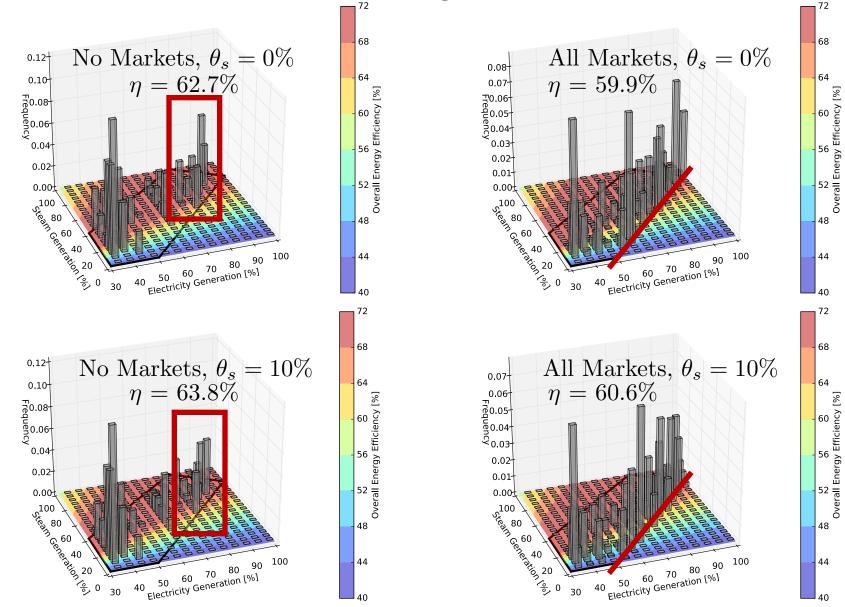


Fuel Price Sensitivity



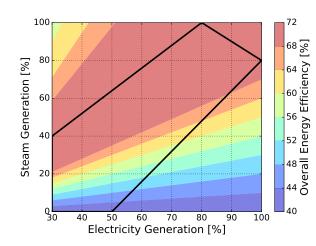
Net Savings from Different Markets

Onsite Steam Demand Flexibility



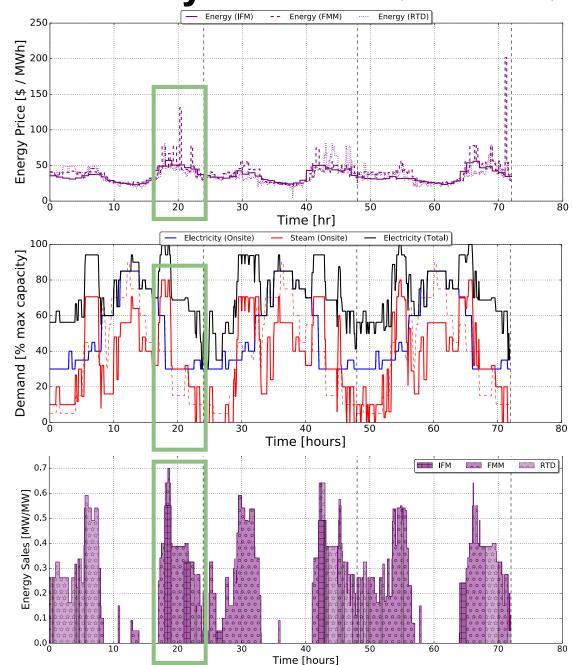
Average Overall Energy Efficiency

Market Participation	$\theta_s = 0\%$	$\theta_s = 10\%$
None	62.7%	63.4%
Energy only	60.1%	60.8%
Energy & Regulation	59.9%	60.6%
All Products	59.9%	60.6%



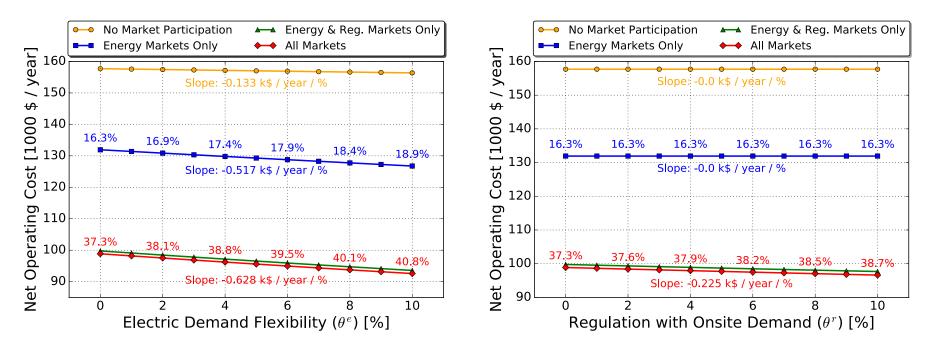
Operation and Efficiency Trends

Full Steam Demand Flexibility



High Energy Prices:

- Elevated Steam Delivery
- High Energy Sales


Low Energy Prices:

- Depressed Steam Delivery
- Low/No Energy Sales

 $(\theta_s = 100\%)$

Onsite Electrical Demand Flexibility

Value	of	Flexibility
[1 m	1	/ 071

$[k $ / year / $\gamma_0]$						
	No Markets	All Markets				
θ_s	-0.135	-0.346				
θ_e	-0.133	-0.628				
$ heta_r$	0	-0.225				

Market participation increases value of flexibility by factor of 2.6 to 4.7

Case Study Conclusions

Market participation reduces net operating costs by

- 31 to 59% (3 \$/MBtu fuel)
- 5 to 16% (7 \$/MBtu fuel)

Participation in both DAM and RTM yields highest net operating cost savings

- Only 35% of potential savings with DAM-only operation
- 86% 91% of potential savings with RTM-only operation

Onsite demand flexibility is 2.6 to 4.7 times more valuable with market participation

2015 market price signals offered substantial incentives for flexible CHP systems with excess capacity

Battery Energy Storage System

Storage Energy Balance and Limits
$$\begin{split} S_{t_3^*(t)} &= S_{t_3^*(t-1)} + \eta^+ \Delta t_3 \left(\sum_{\ell \in \mathcal{M}} \underline{E}_{t_\ell^*(t)} \right) \\ &- \frac{\Delta t_3}{\eta^-} \left(\hat{E}_{t_3^*(t)} + \sum_{\ell \in \mathcal{M}} \bar{E}_{t_\ell^*(t)} \right), \quad t_\ell^*(t) \in \mathcal{T}_\ell^* \\ &0 \leq S_{t_3^*(t)} \leq \Sigma, \quad t_3^*(t) \in \mathcal{T}_3^*, \end{split}$$

$$S_0 = S_{N_3, N_2, N_1, i_0}, \quad i_0 \in \mathcal{T}_1.$$

Worst Case Regulation Dispatch

$$S_{t_3^*(t)} + \eta^+ \Delta t_3 \sum_{\ell \in \mathcal{M}} r_{t_\ell^*(t)}^- \leq \Sigma, \quad t_3^*(t) \in \mathcal{T}_3^*,$$
$$S_{t_3^*(t)} - \frac{\Delta t_3}{\eta^-} \sum_{\ell \in \mathcal{M}} r_{t_\ell^*(t)}^+ \geq 0, \quad t_3^*(t) \in \mathcal{T}_3^*.$$

$$\mathcal{A} := \{s, n, r^+, r^-\}, \quad \ell \in \mathcal{M}$$

$$\boxed{\text{Markets}}$$

$$\underline{E}_{t_{\ell}^*(t)} \quad \bar{E}_{t_{\ell}^*(t)} \quad \begin{array}{c} s_{t_{\ell}^*(t)} \\ n_{t_{\ell}^*(t)} \\ r_{t_{\ell}^*(t)} \\ r_{t_{\ell}^*(t)} \\ r_{t_{\ell}^*(t)} \\ \end{array}$$

Max (Dis)charge Rate: Λ^e Charge Efficiency: η^+ Discharge Efficiency: η^- Max Storage Capacity: Σ

Problem Formulation

Input Parameters

 $\epsilon = 10^{-6}$.

 $\Lambda^e = 1 \text{ MW}_e$

 $\Sigma = 1 \text{ MW}_{e}h$,

 $\rho_{elec} = 50 \ \%/\text{minute},$

 $\theta_r = 0,$

 $\eta^+ = 95\%,$

 $\eta^{-} = 95\%,$

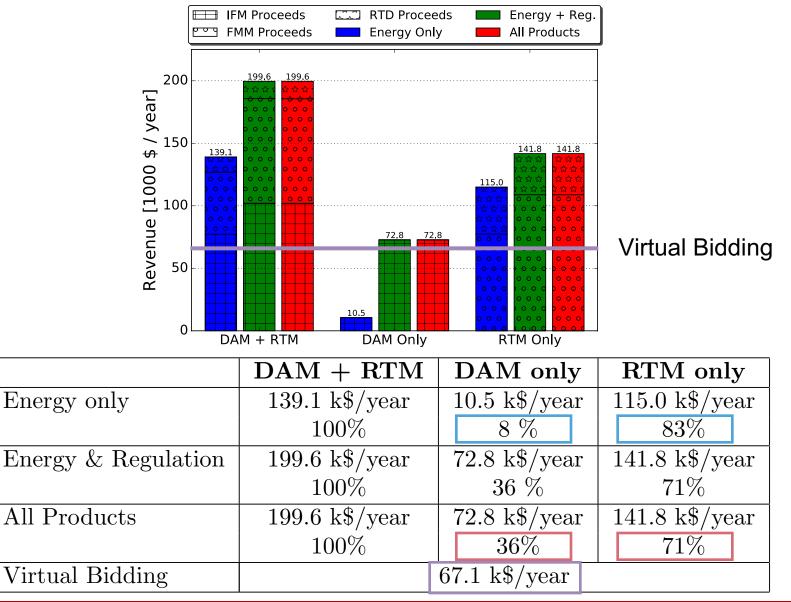
 $\pi^{energy}_{t^*_{\ell}(t)}, \, \pi^{AS}_{a,t^*_{\ell}(t)}.$

Real price data for 2015

Maximize Net Market Revenue s.t. Electricity Market Model Battery Model

<u>Assumptions</u>

Price-taker, perfect information Always on, $y^e_{t^*_1(t)} = 1 \quad \forall t \in \mathcal{T}$


 $\underline{E}_{t_{\ell}^{*}(t)}, \underline{\bar{E}}_{t_{\ell}^{*}(t)}, \underline{E}_{t_{3}^{*}(t)}, s_{t_{\ell}^{*}(t)}, n_{t_{\ell}^{*}(t)}, r_{t_{\ell}^{*}(t)}^{+}, r_{t_{\ell}^{*}(t)}^{-}, r_{t_{\ell}^{*}(t)}^{-}, s_{t_{3}^{*}(t)}, S_{0}$

Problem Size

 $N_0 = 365 \text{ days}, \Delta t_3 = 5 \text{ minutes}$ 0.6 to 1.1 million linear constraints 0.2 to 0.7 million continuous variables Gurobi CPU time: 7 to 53 seconds

Revenues by Market Participation

Net Energy Transactions and Average Prices

Observations:

- Energy is purchased at faster timescales, sold at slower timescales
- Largest average price difference (sale vs. purchase) at fastest timescales

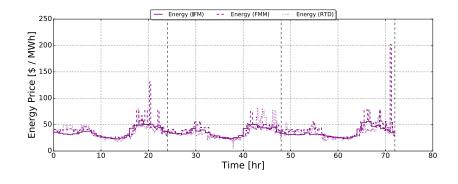
	Integrated Forward Market		Fifteen Mir	Fifteen Minute Market		Real Time Dispatch	
	Sold	Purchased	Sold	Purchased	Sold	Purchased	
Energy only							
DAM + RTM	$3.16 \mathrm{GWh}$	$1.17 \mathrm{GWh}$	1.94 GWh	$1.80 \mathrm{GWh}$	$1.22 \; \mathrm{GWh}$	$4.03 \; \mathrm{GWh}$	
	34.3 \$/MWh	26.6 MWh	44.3 \$/MWh	20.3 $/MWh$	71.9 \$/MWh	$18.7 \ {\rm MWh}$	
DAM only	$0.62 \ \mathrm{GWh}$	$0.69 \mathrm{GWh}$	_	_	_	_	
	41.5 \$/MWh	22.3 \$/MWh	_	_	_	_	
RTM only	_	_	$2.74 \mathrm{GWh}$	1.43 GWh	$1.45~\mathrm{GWh}$	$3.22 \mathrm{GWh}$	
	_	_	38.2 \$/MWh	19.0 MWh	63.2 \$/MWh	16.9 /MWh	
All Products							
DAM + RTM	2.86 GWh	$1.18 \mathrm{GWh}$	1.81 GWh	$1.66 \mathrm{GWh}$	$1.27 \; \mathrm{GWh}$	$3.75 \mathrm{GWh}$	
	33.5 \$/MWh	27.2 \$/MWh	38.9 \$/MWh	21.1 \$/MWh	67.1 \$/MWh	19.1 \$/MWh	
DAM only	$0.55 \mathrm{GWh}$	$0.61 \ \mathrm{GWh}$	_	_	_	_	
	39.0 MWh	$24.5 \ \text{\$/MWh}$	_	_	_	_	
RTM only	_	_	2.64 GWh	$1.47 \; \mathrm{GWh}$	$1.60~\mathrm{GWh}$	$3.23~\mathrm{GWh}$	
	—	_	34.3 \$/MWh	21.8 MWh	58.1 \$/MWh	18.6 /MWh	
Virtual	$5.2 \mathrm{GWh}$	$3.5 \mathrm{GWh}$	3.5 GWh	$5.2 \mathrm{GWh}$	_	_	
Bidding	32.4 \$/MWh	29.6 \$/MWh	37.2 \$/MWh	24.6 \$/MWh	_	_	

Summary and Conclusions

- Present a multi-scale optimal control framework for energy systems participating in CAISO electricity markets
- Discover majority of economic opportunities are at fastest timescales (Real-Time Market)
- Study incentives for industrial systems from price signals

Future Work

 Extend framework to consider market uncertainty and bidding strategies



A Multi-Scale Optimal Control Framework for Electricity Market Participation

Alexander Dowling, PhD with Prof. Victor Zavala

Scalable Systems Laboratory zavalab.engr.wisc.edu

June 29th, 2016

Department of Chemical and Biological Engineering University of Wisconsin-Madison

FERC Meeting: Increasing Market and Planning Efficiency through Improved Software

