
	
Fast	and	Accurate	Calcula/on	of	

Dynamics	Sensi/vi/es	Using	a	Discrete-
Adjoint	Approach		

Emil	Constan,nescu★,	Shrirang	G.	Abhyankarv,	Mihai	Anitescu★,		
Hong	Zhang★,	and	Cosmin	Petra★

★Mathema,cs	and	Computer	Science	and	vEnergy	Systems	

Argonne	Na/onal	Laboratory	

June	29,	2016	



Outline	

1.  Sensi,vity	analysis	for	power	grid	simula,ons:	
local	discrete	adjoint	sensi,vity	

2.  SoLware	infrastructure:	Efficient	implementa,on	
and	accurate	calcula,ons	of	dynamic	sensi,vi,es		

3.  Applica,ons:	op,miza,on,	parameter	es,ma,on,	
uncertainty	quan,fica,on	
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§ 	Numerical	model:	

§ 	Cost	func,on,	e.g.,:	

§ Sensi,vity	analysis:	describe	the	behavior	of	func,onals	that	depend	on	
dynamic	variables	with	respect	to	system	parameters	

§ Applica,ons:	sensi,vity	analysis	in	power	grid	simula,ons:	
•  	Op,miza,on:	security	constrained	OPF,	economic	dispatch	
•  	Impact	or	appor,onment	assessment,	
•  	Uncertainty	quan,fica,on,	parameter	es,ma,on	

§ Two	types	of	sensi,vi,es:	local	and	global	
§ Local	sensi,vi,es:	discrete	and	con,nuous	
§ Local	sensi,vity	can	be	computed	by:	finite	difference,	forward,	and	adjoint	

Sensi/vity	Analysis	for	Dynamic	Power	Grid	Simula/ons	
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§ 	System:	

G = g(y(tF )) +

Z tF

t0

r(t, y)dt

M
dy

dt
= f(t, y, p)

S =
dG()

dp
§ 	Sensi,vity:	

yn+1 = Nn(yn)



		

Parallel Infrastructure (MPI, Vectors…)

Full Software Stack

Linear solves

Nonlinear solves

Time stepping solves

Model equations

Level of Abstraction 

Optimization
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Require 
sensitivity 
calculations 

Numerical	SoEware	Stack	



Compu/ng	Sensi/vi/es:	Finite	Differences		
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§ Easy	to	implement	

§ Inefficient	for	many	parameter	case,		
due	to	one-at-a-,me	
§ Error	depends	cri,cally	on	the		
perturba,on	value	Δp	

h
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r
Truncation error

Total error

Roundoff error
Truncation error

Total error

Roundoff error
Truncation error

Total error

Roundoff error
Truncation error

Total error

Roundoff error

finite		difference	
error	
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Compu/ng	Sensi/vi/es:	The	Forward	Approach	
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§ Governing	equa,on	

	
§ Discre,za,on	with	a	,me	stepping	algorithm,	(e.g.	backward	Euler)	

§ Differen,ate	the	equa,on	on	parameters	

§ Solve	one	full	(linear)	system	for	each	parameter	

Governing 
equations Discretization Differentiation   

p 
Discrete 

dG
dp

MS`,n+1 = MS`,n + h (fy(tn+1, yn+1)S`,n+1 + fp(tn+1, yn+1))

Myn+1 = Myn + h (f(tn+1, yn+1))

M
dy

dt
= f(t, y), y(t0) = y0(p)

S`,N = dG/dp` = dyN/dp`



Compu/ng	Sensi/vi/es:	The	Adjoint	Approach	
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§ 	Numerical	one-step	integrator:	

§ Enforce	sensi,vity	equa,on	through	Lagrange	mul,pliers,	then	differen,ate:	

§ Solve	the	linear	sensi,vity	equa,ons	for	all	parameters	in	one-shot:	

Governing 
equations 

Adjoint of 
algorithms 

Discretization 
p 

Discrete 
dG
dp

yn+1 = Nk(yn), n = 0, . . . , N � 1, y0 = �(p)

d

dp
L =

d

dp
{G� (�0)

T (y0 � �)�
N�1X

n=0

(�n+1)
T (yn+1 �N (yn))}

yn+1 = Nn(yn), n = 0, . . . , N � 1, y0 = �(p)

�N =

✓
dG

dy

◆T

, �n =

✓
dN
dy

(yn)

◆T

�n+1, n = N � 1, . . . , 0, rpG =

✓
d�

dp

◆T

�0

�N =

✓
dG

dy

◆T

, �n =

✓
dN
dy

(yn)

◆T

�n+1, n = N � 1, . . . , 0, rpG =

✓
d�

dp

◆T

�0



Sensi/vity	calcula/ons:	Forward	or	Adjoint?	
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t0	 tf	

yn+1 = yn +Δt • f (tn+1, yn+1)

λn = λn+1 +Δt • fy (tn+1, yn+1)
T •λn

tn	 tn+1	

Forward	run	and	forward	sensi,vity	

Reverse	(adjoint)	run	

Forward	 Adjoint	

Best	to	use	when	the	
number	of	

parameters	<<	func,onals	 parameters	>>	func,onals	

Complexity	 O(#	of	parameters)	 O(#	of	func,onals)	

Checkpoin,ng	 No	 Yes	

Implementa,on		 Medium	 High	

Hong	Zhang,	Shrirang	S.	
Abhyankar,	Emil	M.	
Constan9nescu,	and	Mihai	
Anitescu,	"A	Discrete	sensi9vity	
analysis	of	power	system	
dynamics.”	Under	Review,	2016.	



§ PETSc:	Open-source	numerical	library	for	large-scale	parallel	computa,on	
§ Portability	
• 32/64	bit,	real/complex,	
•  	single/double/quad	precision	
• Unix,	Linux,	MacOS,	Windows	
• C,	C++,	Fortran,	Python,	MATLAB	
• GPGPUs	and	support	for	threads	

§ Extensibility	
• ParMe,s,	SuperLU,	SuperLU_Dist,	MUMPS,		
HYPRE,UMFPACK,	Sundials,	Elemental,		
Scalapack,	UMFPack,	…	

§ Toolkit	
• Sequen,al	and	Parallel	vectors	
• Sequen,al	and	Parallel	matrices	
•  Itera/ve	solvers	and	precondi/oners	
• Parallel	nonlinear	solvers	
• Adap/ve	/me	stepping	(ODE	and	DAE)	solvers	

Adjoint	Integra/on	with	Portable,	Extensible	Toolkit	
for	Scien/fic	Computa/on	(PETSc)	

Time-stepping	level		
adjoint	implementa,on	

Mathema,cs	and	Computer	Science,	Argonne	Na,onal	Laboratory	

Forward	
equa,ons	

Forward	
equa,ons	

Discrete	
adjoints	

Time	
discre,za,on	

Forward	,me	stepping	

Backward	,me	stepping	

Manual	
deriva,on	
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Hong	Zhang,	Shrirang	S.	Abhyankar,	Emil	M.	
Constan9nescu,	and	Mihai	Anitescu,	"A	Discrete	
sensi9vity	analysis	of	power	system	dynamics.”	
Under	Review,	2016.	

		

Parallel Infrastructure (MPI, Vectors…)

Linear solves

Nonlinear solves

Time stepping solves

Model equations

Optimization



PETSc	Design	Goals	and	Implementa/on	
1.  Minimize	intrusion	
2.  Reuse	func,onali,es	(already	implemented	in	PETSc	or	provided	by	users)			
3.  Aim	for	general-purpose	solu,ons	and	support	for	switching	
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TSAdjointStep 

TSAdjointMonitor 

TSTrajectoryGet 

TSAdjointEvent 

TSAdjointSolve	

Jacobian w.r.t. 
parameters 

Sensitivities 

TSStep 

TSMonitor 

TSEvent 

TSAdapt 

TSSolve	

RHS 
Jacobian 

Solution 

TSTrajectorySet 

♻	

input	 input	

output	output	



Op/mal	Checkpoin/ng	
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blue arrow: store a checkpoint 
 
red arrow: restore a checkpoint 
 
black arrow: a step 
 
circle: solution 

§ Minimize	the	number	of	recomputa,ons	and	the	number	of	reads/writes	by	using	
exi,ng	library	revolve	a	less	intrusive	way	

•  revolve	is	designed	as	a	top-level	controller	for	,me	stepping	
•  TSTrajectory	consults	revolve	about	when	to	restore/restore/recompute	

§  Incorporate	a	variety	of	single-level	and	two-level	schemes	for	offline	and	online	
checkpoin,ng		

•  Exis,ng	algorithms	work	great	for	RAM	only	checkpoin,ng	
•  Our	extension	is	op,mal	for	RAM+disk		

An	op,mal	schedule	given	3	allowable	checkpoints	in	RAM:	

6/29/16	
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How	Precision	of	the	Gradients	Affects	Op/miza/on		
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Hong	Zhang,	Shrirang	S.	Abhyankar,	Emil	M.	Constan9nescu,	
and	Mihai	Anitescu,	"A	Discrete	sensi9vity	analysis	of	power	
system	dynamics.”	Under	Review,	2016.	

Hong Zhang, Argonne National Laboratory

How precision of the gradients affects optimization 

Consider a maximization objective of the mechanical power input 𝑃𝑃𝑚𝑚 subject to the generator 
swing equations and a constraint on the maximum rotor angle deviation 𝛿𝛿 − 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚, ∀𝑡𝑡 ∈ 𝑡𝑡0, 𝑡𝑡𝐹𝐹 . 
This can be reformulated as a minimization with a penalty term on the rotor angle deviation: 

min𝑃𝑃𝑚𝑚
−𝑃𝑃𝑚𝑚 + 𝜎𝜎 ∫𝑡𝑡0

𝑡𝑡𝐹𝐹max(0, )𝛿𝛿 − 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 𝜂𝜂dt

s.t.
𝑑𝑑𝛿𝛿
𝑑𝑑𝑡𝑡 = 𝜔𝜔𝐵𝐵 𝜔𝜔 − 𝜔𝜔𝑠𝑠
𝑑𝑑𝛿𝛿
𝑑𝑑𝑡𝑡 =

𝜔𝜔𝑠𝑠
2𝐻𝐻 𝑃𝑃𝑚𝑚 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 sin 𝛿𝛿 − 𝐷𝐷 𝜔𝜔 − 𝜔𝜔𝑠𝑠

• optimization process using the forward and adjoint
sensitivities converge after 13 iterations.

• optimization using the finite-difference 
approximations stall with a residual of 10-6. 

• an expected downside of the reduced precision of 
finite differences, now demonstrated on a power grid 
example. 
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§ Maximize	mechanical	power	input,	subject	to	the	generator	swing	equa,ons	and	a	
constraint	on	the	maximum	rotor	angle	devia,on:	

§ op,miza,on	process	using	the	forward	and	
adjoint	sensi,vi,es	converge	aLer	13	itera,ons	

§ op,miza,on	using	the	finite-difference	
approxima,ons	stall	with	a	residual	of	10-6	
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No.	of	
Variables	

No.	of	
Parameters	

No.	of	
Func/ons	

9	bus	 42	 24	 3	

118	bus	 884	 344	 54	

Forward	 Adjoint	 Simula/on	

9	bus	 0.12	s	 0.05	s	 0.03	s	

118	bus	 14.00	s	 1.82	s	 0.33	s	

The	adjoint	method	is	faster	than	the	forward	method	
by	2.4X	and	7.7X	for	the	9-bus	and	118-	bus	systems	

6/29/16	
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Sensi/vity	of	Dynamic	Security	Metric	to	System	
Dispatch	Parameters		

§ Dynamic	security	metric	for	each	generator	

§ Compute	sensi,vity	of	each	Hi	w.r.t.	generator	
ac,ve	and	reac,ve	dispatch,	and	the	bus	voltage	
magnitudes	and	angles	at	ini,al	,me	

Hong Zhang, Argonne National Laboratory

Sensitivity of dynamic security metric to system dispatch parameters 

▸ dynamic security metric for each generator

𝐻𝐻𝑖𝑖 𝑥𝑥, 𝑦𝑦 = 𝜎𝜎�
0

𝑇𝑇
𝑚𝑚𝑚𝑚𝑥𝑥 0,𝜔𝜔𝑖𝑖 − 𝜔𝜔+,𝜔𝜔+ − 𝜔𝜔𝑖𝑖 𝜂𝜂 𝑑𝑑𝑡𝑡

• 𝜔𝜔𝑖𝑖: the frequency of the generator i
• ω+/ω−:  the max and min freq limits

▸ goal: find the sensitivity of 𝐻𝐻𝑖𝑖 w.r.t. to the 
parameters (i.e. the generator active and reactive 
dispatch, and the bus voltage magnitudes and 
angles at initial time) 

No. of 
Variables

No. of 
Parameters

No. of 
Functions

9 bus 42 24 3

118 bus 884 344 54

Forward Adjoint Simulation

9 bus 0.12 s 0.05 s 0.03 s

118 bus 14.00 s 1.82 s 0.33 s

The adjoint method is faster than the forward method 
by 2.4X and 7.7X for the 9-bus and 118- bus systems



		

Mathema,cs	and	Computer	Science,	Argonne	Na,onal	Laboratory	

Bayesian	Approach	for	Parameter	Es/ma/on	
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§ Es,mate	generator	iner,as	during	dynamic	transient	
generated	by	inducing	a	load	disturbance	

§ Measurements:	voltage	phase	and	amplitude	

§ Need	to	maximize	the	maximum	
	aposteriori	es,mate:	

Noemi	Petra,	Cosmin	G.	Petra,	Zheng	Zhang,	Emil	M.	Constan9nescu,	and	Mihai	
Anitescu,	"A	Bayesian	approach	for	parameter	es9ma9on	with	uncertainty	for	
dynamic	power	systems."	IEEE	Transac9ons	on	Power	Systems,	SubmiQed,	2016.	
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Bayesian	Approach	for	Parameter	Es/ma/on	
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§ Use	adjoints	to	compute	the	gradient	of	the	posterior	distribu,on	
§ The	op,miza,on	is	solved	with	quasi-Newton	in	TAO/PETSc	

Noemi	Petra,	Cosmin	G.	Petra,	Zheng	Zhang,	Emil	M.	Constan9nescu,	and	Mihai	Anitescu,	"A	Bayesian	approach	for	
parameter	es9ma9on	with	uncertainty	for	dynamic	power	systems."	IEEE	Transac9ons	on	Power	Systems,	Review,	2016.	
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Adjoint	Sensi/vity	Analysis	for	Targeted	Genera/on	Cost	

§  Sensi,vity	of	[energy	genera,on]	cost	func,onal	with	respect	to	ambient	condi,ons:	

§ Applica,ons:	sensor	placement,	reduce	
uncertainty	with	detailed	simula,on,		
reveals	correla,ons	among	physical	
	variables	and	economic	func,ons		

Sensi,vity	of	grid	
opera,on	costs	with	
respect	to	weather	
condi,ons	
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Alexandru	Cioaca,	Victor	Zavala,	and	Emil	M.	Constan9nescu,	"Adjoint	Sensi9vity	Analysis	for	Numerical	Weather	
Predic9on:	Applica9ons	to	Power	Grid	Op9miza9on.”	Networking	and	Analy9cs	for	the	Power	Grid,	2011.	

S =
@G

@W(t)
G(w(t)) [$] = c(t) + �(t)T!(w(t))



Dynamic	Code	Consistency	(vs	PSSE)	
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Transient	stability	analysis:	IEEE	9bus,	fault	for	0.1	sec		
1.  Generators:	GENROU				
2.  Exciters:	IEEET1	
3.  Governors:	TGOV1	
4.  Stabilizers:	STAB1	
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Large	Scale	Dynamic	Simula/ons	Using	PETSc	
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§ Parallel	direct	solvers	are	not	scalable:	
use	MUMPS	and	SuperLU_Dist	
§ Precondi,oned	GMRES	more	scalable:	
use	addi,ve	Schwarz	
§ Adap,ve	,me	stepping	

G	

G	
Vec	

G	

G	
Vec	

Communica,on	

	Shrirang	Abhyankar,	Emil	M.	Constan9nescu,	Barry	Smith,	Alexander	J.	Flueck,	and	Daniel	A.	Maldonado	"Accelera9on	of	
dynamic	simula9ons	using	parallel	Newton-GMRES-Schwarz	methods."	IEEE	Transac9ons	on	Smart	Grid	Special	Issue	on	
High	Performance	Compu9ng	(HPC)	Applica9ons	for	a	More	Resilient	and	Efficient	Power	Grid,	Under	Review,	2015.		

§ Dynamic	power	grid	simula,on:	10	second-simula,on	with	a	six	cycle	temporary	three-
phase	fault	applied	at	a	bus	for	1	second	
§ 16-core	machine,	peak	speedups	of	about	3	or	4		

5

C. Test case details

The inventory of the test cases is given in Table II. Test case
case2737sop, available with MATPOWER [27] represents the
Polish 400, 220 and 110 kV networks during summer 2004
off-peak conditions. The data for case9241pegase, also avail-
able with MATPOWER, stems from the Pan European Grid
Advanced Simulation and State Estimation (PEGASE) project,
part of the 7th Framework Program of the European Union.
case22996 is a synthetic test case created by combining several
MATPOWER test cases by adding tie-lines for connecting
the different networks. Case labeled caseUtil is a real utility
network.

TABLE II
INVENTORY OF TEST CASES

CaseName Buses Generators Branches

case2737sop [27] 2737 399 3506
case9241pegase [28] 9241 1445 16049

case22996 [8] 22996 2416 27408
caseUtil

For the dynamic simulations, all the generators were mod-
eled by using the GENROU model [29] with an IEEE Type
1 exciter model [29], and the loads modeled as constant
impedances. The numerical integration scheme used is an im-
plicit trapezoidal scheme with a time step of 0.008333 seconds,
i.e., half-cycle for 60 Hz frequency. All the simulations on the
first three test cases were run for 10 seconds with a six cycle
temporary three-phase fault applied at a bus at 1 second. For
the utility network, a twelve cycle temporary fault was applied
at 0.2 seconds.

D. Serial performance

Tables III and IV, list the execution times on a single
processor for a 10-second simulation using two different linear
solvers. PETSc provides a direct sparse linear solver (LU
factorization + triangular solves) that uses an efficient memory
access scheme for storing the factored L and U matrices
[30]. KLU [31] is a software package that provides direct
sparse linear solver specifically for solving linear systems that
arise in circuit simulation problems and has been reported as
an efficient linear solver for power system applications [32],
[33]. Various reordering strategies, available with PETSc and
SuiteSparse [34] were investigated to determine the optimal
reordering strategy, namely, the ordering scheme resulting in
the least number of nonzeros in the factored matrix. The
quotient minimum degree ordering in PETSc was found to be
the best reordering on the systems that we tested. In addition,
a very dishonest Newton strategy is also used that updates the
numerical factorization only at fault-on and fault-off times.

E. Parallel performance

Figures 3-8 show the scalability of the dynamics simulation
with the Krylov-Schwarz linear solution scheme, GMRES
preconditioned with a restricted overlapping additive Schwarz
scheme, with different amounts of overlap. A lagging pre-
conditioner, or very dishonest preconditioning, strategy [6]

TABLE III
EXECUTION TIMES FOR SINGLE PROCESSOR USING PETSC AND KLU ON

MACHINEA

Test System PETSc KLU
case2737sop 24.4 27.14
9241pegase 93.27 113.27
case22996 144.16 180.39
caseUtil 141.87 191.59

TABLE IV
EXECUTION TIMES FOR SINGLE CORE USING PETSC AND KLU ON

MACHINEB

Test System PETSc KLU
case2737sop 23.58 25.29
9241pegase 90.79 108.85
case22996 138.02 170.71

is also used that updates the preconditioner only at fault-on
and fault-off times. A comparison with using a multifrontal
approach based direct parallel linear solver, available through
the MUMPS package [35] is also presented.

The overlapping Schwarz preconditioners need the solution
of subdomain linear system
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during the GMRES iterations, where r
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(b�Ax) is
the restricted error. The solution of Equation 14 can be
done either by direct or iterative linear solution schemes. As
matrices arising from power system applications are not well-
conditioned, our experiments corroborate that the stationary
iterative schemes such as as Gauss-Jacobi, Gauss-Siedel, and
successive over-relaxation (SOR) converge very slowly. In
this work, we solve the linear system in Equation 14 by a
direct solver (LU factorization + triangular solves). For a small
number of subdomains, direct solve using LU is expensive as
the subdomains are large, but the subdomain solve is robust.
With more processors, the subdomain sizes become smaller,
reducing the cost of direct solves. To minimize the fill-ins
created by LU factorization, we use a quotient minimum
degree reordering scheme.

For all the test cases, the Krylov-Schwarz linear solution
was found to be more scalable than using parallel direct
solution using MUMPS. In fact, parallel direct solution us-
ing MUMPS yielded poor scalability. More scalability was
observed with larger overlaps with the overlapping Schwarz
preconditioning. This behavior is true with most overlapping
Schwarz methods where more overlap implies a stronger
preconditioner resulting in faster convergence for GMRES.
However, more overlap also means an increase in the time
to build the preconditioner, which may result in overall slow-
down. In our experiments, overlaps of 2 and 3 were found to
be optimal on the different test cases. Overlaps greater than
3 did not increase the scalability due to the increased time to
build the preconditioner and communication.

Table V summarizes the peak scalability observed on the
different test cases on the two machines.
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C. Test case details

The inventory of the test cases is given in Table II. Test case
case2737sop, available with MATPOWER [27] represents the
Polish 400, 220 and 110 kV networks during summer 2004
off-peak conditions. The data for case9241pegase, also avail-
able with MATPOWER, stems from the Pan European Grid
Advanced Simulation and State Estimation (PEGASE) project,
part of the 7th Framework Program of the European Union.
case22996 is a synthetic test case created by combining several
MATPOWER test cases by adding tie-lines for connecting
the different networks. Case labeled caseUtil is a real utility
network.

TABLE II
INVENTORY OF TEST CASES

CaseName Buses Generators Branches

case2737sop [27] 2737 399 3506
case9241pegase [28] 9241 1445 16049

case22996 [8] 22996 2416 27408
caseUtil

For the dynamic simulations, all the generators were mod-
eled by using the GENROU model [29] with an IEEE Type
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first three test cases were run for 10 seconds with a six cycle
temporary three-phase fault applied at a bus at 1 second. For
the utility network, a twelve cycle temporary fault was applied
at 0.2 seconds.
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Tables III and IV, list the execution times on a single
processor for a 10-second simulation using two different linear
solvers. PETSc provides a direct sparse linear solver (LU
factorization + triangular solves) that uses an efficient memory
access scheme for storing the factored L and U matrices
[30]. KLU [31] is a software package that provides direct
sparse linear solver specifically for solving linear systems that
arise in circuit simulation problems and has been reported as
an efficient linear solver for power system applications [32],
[33]. Various reordering strategies, available with PETSc and
SuiteSparse [34] were investigated to determine the optimal
reordering strategy, namely, the ordering scheme resulting in
the least number of nonzeros in the factored matrix. The
quotient minimum degree ordering in PETSc was found to be
the best reordering on the systems that we tested. In addition,
a very dishonest Newton strategy is also used that updates the
numerical factorization only at fault-on and fault-off times.

E. Parallel performance

Figures 3-8 show the scalability of the dynamics simulation
with the Krylov-Schwarz linear solution scheme, GMRES
preconditioned with a restricted overlapping additive Schwarz
scheme, with different amounts of overlap. A lagging pre-
conditioner, or very dishonest preconditioning, strategy [6]
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9241pegase 93.27 113.27
case22996 144.16 180.39
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case2737sop 23.58 25.29
9241pegase 90.79 108.85
case22996 138.02 170.71

is also used that updates the preconditioner only at fault-on
and fault-off times. A comparison with using a multifrontal
approach based direct parallel linear solver, available through
the MUMPS package [35] is also presented.

The overlapping Schwarz preconditioners need the solution
of subdomain linear system
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(b�Ax) is
the restricted error. The solution of Equation 14 can be
done either by direct or iterative linear solution schemes. As
matrices arising from power system applications are not well-
conditioned, our experiments corroborate that the stationary
iterative schemes such as as Gauss-Jacobi, Gauss-Siedel, and
successive over-relaxation (SOR) converge very slowly. In
this work, we solve the linear system in Equation 14 by a
direct solver (LU factorization + triangular solves). For a small
number of subdomains, direct solve using LU is expensive as
the subdomains are large, but the subdomain solve is robust.
With more processors, the subdomain sizes become smaller,
reducing the cost of direct solves. To minimize the fill-ins
created by LU factorization, we use a quotient minimum
degree reordering scheme.

For all the test cases, the Krylov-Schwarz linear solution
was found to be more scalable than using parallel direct
solution using MUMPS. In fact, parallel direct solution us-
ing MUMPS yielded poor scalability. More scalability was
observed with larger overlaps with the overlapping Schwarz
preconditioning. This behavior is true with most overlapping
Schwarz methods where more overlap implies a stronger
preconditioner resulting in faster convergence for GMRES.
However, more overlap also means an increase in the time
to build the preconditioner, which may result in overall slow-
down. In our experiments, overlaps of 2 and 3 were found to
be optimal on the different test cases. Overlaps greater than
3 did not increase the scalability due to the increased time to
build the preconditioner and communication.

Table V summarizes the peak scalability observed on the
different test cases on the two machines.
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§ Local	sensi,vity	analysis	using	discrete	adjoints	
§ Most	efficient	and	accurate	for	problems	with	many	decision	parameters	
§ The	implementa,on	takes	advantage	of	highly	developed	solver	
infrastructure:	MPI,	parallel	vectors/matrices,	domain	decomposi,on,	linear/
nonlinear	solvers	
§ Advanced	checkpoin,ng,	transparent	to	the	user	
§ Current	implementa,on	avoids	complete	algorithmic	differen,a,on	and	
requires	minimal	user	input,	reuses	informa,on	provided	for	the	forward	
simula,on	
§ Implementa,on	accommodates	jumps/switches/discon,nui,es	
§ Experiments	on	parameter	es,ma,on,	dynamic	security	constraints	for	IEEE	
9-bus	and	118-bus		dispatch	parameters;	and	other	large	scale	problems	
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