

Look-Ahead Strategic Energy Storage in Ramp-Constrained Markets

Yishen Wang, Yury Dvorkin, Ricardo Fernández-Blanco, Daniel Kirschen

June 29th, 2016

111111111

Outline

- Introduction
- Formulation
- Numerical Results
- Summary

Introduction

- Previous work on energy storage assumed a vertically integrated context
- Merchant energy storage systems to be deployed soon
- Merchant storage will aim to maximize profit rather than minimize system cost
- Stochastic programming and robust optimization are commonly used with parameterized price uncertainties
- Alternatively, complementarity models can be formulated to analyze the storage/market interactions

Optimized fSoC for D+1

- Storage profitability depends on the SoC levels at the beginning of the planning horizon
- SoC levels at the last operating hour (fSoC) on day D+0 usually fixed at initial SoC levels
- Fixing fSoC on day D+0 limits the potential profits on day D+1
- Look-ahead to optimize fSoC

Market Assumptions

- Day-ahead energy market for arbitrage
- Storage optimizes its price-quantity bids
- Both D+0 and D+1 market windows are considered
- Optimized SoC during D+0 (including the last hour)
- Storage discharging/charging is paid/charged at LMPs
- Ramp rates of conventional generators are constrained
- Wind producers offer at \$0/MWh
- Demand is elastic and bids in the market

Bilevel Structure

Energy storage optimizes its price-quantity bids/offers

- Energy storage optimizes its price-quantity bids/offers
 - Objective function

- Energy storage optimizes its price-quantity bids/offers
 - Objective function

- Upper level decision variables: price-quantity bids, SoC on D+0 and D+1
- Charging/Discharging limits
- SoC limits
- D+1 SoC recovery constraint

- Market is cleared based on the offers of generators and storage and the bids of loads and storage
 - Maximize system social welfare
 - Power balance constraints
 - Thermal generator upper/lower limits
 - Wind upper/lower limits
 - Demand upper/lower limits
 - Storage charging limits
 - Storage discharging limits

- DC power flow model:
 - Voltage angles constraints
 - Transmission capacities constraints
- System thermal flexibility is limited
 - Thermal generator ramp up/down constraints
 - Inter-temporal constraints on conventional generators

Solution Technique

- Lower-level problem is a linear programming problem with given storage offers and bids
- KKT conditions can be derived
- This Mathematical Programming with Equilibrium Constraints (MPEC) problem can be transformed into a single-level equivalent
- The resulting MILP formulation is computational tractable
- A duality-based approach is also applicable (but turns out to be more computationally expensive)

Test System Data

- IEEE RTS 24-bus system with 32 generators, 5 wind farms and 4 storage (locations and sizes are optimized as in [2])
- One representative week is used to test the algorithm
- Wind profiles are from NREL's Eastern Dataset
- Implemented in GAMS and solved with CPLEX

Storage	ES1	ES2	ES3	ES4
Power Rating (MW)	41	17	36	93
Energy Rating (MWh)	303	117	247	629

- Without network constraints and without ramp limits
 - Case 1 : No look-ahead, fSoC = SoC₀ = 50% on day D+0
 - Case 2 : No look-ahead, optimized fSoC on day D+0
 - Case 3 : With look-ahead, discount factor $\gamma = 0.5$
 - Case 4 : With look-ahead, discount factor $\gamma = 1.0$

Case	No Look-ahead, fSoC = SoC ₀ = 50%	No Look-ahead, optimized fSoC	With look-ahead, $\gamma = 0.5$	With look-ahead, $\gamma = 1.0$
Profits (\$)	45141	62558 <mark>(+ 38 %)</mark>	66069 (+ 46 %)	59016 (+ 31 %)

- With network constraints and with ramp limits
 - Case 5 : No look-ahead, fSoC = SoC₀ = 50% on day D+0
 - Case 6 : No look-ahead, optimized fSoC on day D+0
 - Case 7 : With look-ahead, discount factor $\gamma = 0.5$
 - Case 8 : With look-ahead, discount factor $\gamma = 1.0$

Case	No Look-ahead, fix fSoC = SoC ₀ = 50%	No Look-ahead, optimized fSoC	With look-ahead, $\gamma = 0.5$	With look-ahead, $\gamma=1.0$
Profits (\$)	59672	68218 <mark>(+ 14 %)</mark>	69400 <mark>(+ 16 %)</mark>	62326 <mark>(+ 5 %)</mark>

- With network constraints and with ramp limits
 - Case 5 : No look-ahead, fSoC = SoC₀ = 50% on day D+0
 - Case 6 : No look-ahead, optimized fSoC on day D+0
 - Case 7 : With look-ahead, discount factor $\gamma = 0.5$
 - Case 8 : With look-ahead, discount factor $\gamma = 1.0$

Case	No Look-ahead, fix fSoC = SoC ₀ = 50%	No Look-ahead, optimized fSoC	With look-ahead, $\gamma=0.5$	With look-ahead, $\gamma=1.0$
Profits (\$)	59672	68218 <mark>(+ 14 %)</mark>	69400 <mark>(+ 16 %)</mark>	62326 <mark>(+ 5 %)</mark>
Change from Case 1-4	+ 14531	+ 5660	+ 3331	+ 3310

Effect of the D+1 Forecast Error

- Better forecast results in higher profits
- Discount factor γ should not set too large

Effect of the Transmission Capacity

Transmission capacity affects storage's ability to perform 8 <u>×10</u>⁴ arbitrage 6 Profits \$ 75% Line Capacities 85% Line Capacities 2 100% Line Capacities 115% Line Capacities **Unconstrained Line Capacities** 0 $\gamma = 0$ γ =0.5 γ =1

Summary

- Look-ahead bidding increases storage profits in the day-ahead energy market
- Use proper discount factor to determine good initial SoC level for D+1
- Network constraints have a two-fold effect:
 - Generally increase storage's profits
 - Reduce this profit if storage energy cannot be delivered
- Storage takes advantage of the limited ramping capacity in the day-ahead energy market

References

[1] Y. Wang, Y. Dvorkin, R. Fernández-Blanco, and D. S. Kirschen, "Look-ahead Strategic Energy Storage in Ramp-Constrained Market", 2016.

[2] H. Pandzic, Y. Wang, T. Qiu, Y. Dvorkin, and D. S. Kirschen, "Near-optimal method for siting and sizing of distributed storage in a trans-mission network," IEEE Trans. on Power Syst., vol. 30, no. 5, pp. 2288–2300, Sept 2015.

[3] Y. Dvorkin, R. Fernández-Blanco, D. S. Kirschen, H. Pandzic, J.-P. Watson, and C. A. Silva-Monroy, "Ensuring Profitability of Energy Storage," IEEE Trans. On Power Syst., in press.

[4] B. Xu, Y. Dvorkin, D. S. Kirschen, C. A. Silva-Monroy, J.-P. Watson, "A Comparison of Policies on the Participation of Storage in U.S. Frequency Regulation Markets," IEEE PES Gen. Meeting, 2016.
[5] International Energy Agency, "Energy Storage Technology Roadmap," Technical Report, 2014.
[6] NREL, "Renewable Electricity Futures Study," Technical Report, 2012.

THANK YOU!

Yishen Wang University of Washington ywang11@uw.edu

UNIVERSITY of WASHINGTON