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Talk outline

e Optimization framework for using storage to offset uncertainty in renew-

able forecast output
e “OPF-like” setup: minimize cost of generation
e Multiperiod model, with per-period renewable forecasts
e affine control for renewable output

e robust optimization used to handle forecast errors



Questions/issues

e Batteries not quite here yet?
e Transmission level or distribution level only?
e Can batteries be moved around? In what time frame?

e What is the cost of moving/installing batteries and how should that be

factored into operations?

e What is the correct time frame for analyzing the benefit of using batteries?



A simple example on 2 periods

G = generator, L = load, B = battery, W = renewable
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e Period 1: each renewable outputs 20, no uncertainty:.
e Period 2: cach renewable outputs in the range [0, 20].

e Battery and generator are large, but battery starts drained.



e Period 1: each renewable outputs 20, no uncertainty.

e Period 2: each renewable outputs in the range [0, 20].
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Notation
1. T time periods of equal length A. Assume A = 1.
2. P2* = output of generator at bus k at time t (decision variable)

3. w! + w! = output of renewable at bus 7 at time t.
w! = forecast, w! = error (uncertain).

4. 5;’. = output of battery at bus 7 at time t.
Assumption: all batteries at a given bus 7 are of similar type.

5. P,f " — load at bus k at time ¢ (data).
6. DC power flow — for all ¢, and all w,

MRy (w4 wh) + Y 6 =) P
i J k

k



1. T time periods of equal length A. Assume A = 1.

2. P?' = output of generator at bus k at time ¢ (decision variable)

3. w! + w! = output of renewable at bus % at time ¢. w! = forecast, w} = error (uncertain).

4. 5;. = output of battery at bus 7 at time t.

5. PY* = load at bus k at time ¢ (data).

6. For all ¢, and all w, ), P,f’t + S (wh+ wh) + Zj 5}? =3, p}j=t

i

Generic affine control:

A\t t
6, = A — A Z Wi
i€R(j)

e \'. \': decision variables

e R(j): set of buses that battery at j responds to
Example 1: (bad?) a battery at each renewable, R(j) = j for all j
Example 2: for all 7, R(j) = all renewables

Nominal case:

doPM ey wl + Y N = > P
k 1 J k



Balance: Y, P?" + > .(w!+ w?) + >, 0% = S P Y

Nominal case: >, P/" + S ! + DN =20 P
Generic affine control: & = X, — X\’ (ZieR(j) ’wi)
This talk: R(g) = all renewables, for each j.

Affine control: &% = N — X (32, w;)

Balance: Y, PP + 32, + 30, X+ (5, wi) (1- 3, 0) = £, Py

Together with nomimal case, implies: } )\3. =1

Other considerations

e What is the sign of 5\3? Of 5\3.?

e Require that they have the same sign? That they all have the same sign,
for any given t7

e Force )\;. > 07

® Restrict the number of nonzero A%, for any t?



Battery model

e Discharge rate bounds. We will want to lower- and upper-bound

_\t t

i€R(j)
for all batteries 2, time t and all w

e [nergy state bounds. Let Ef = initial energy state of battery at site .
Then

t
t 0 h
El = E} + A) ¢
h=1

is the energy state at the end of period ¢. (A = length of time periods)
Must have lower- and upper-bounds on E;

e Special bounds for E;TF?



Renewable forecast error model

t

Output of renewable 4 at time ¢: W} + w!

e w; = forecast output

° wf = error; w € VYV, where VWV = uncertainty model.

Linear error model: W = {w : Cw < d}

Example: concentration model

vE, all t and
I allt

w;
D ailwj]
1

Here, the +}, afand T are parameters. Special case: a!=1/~;

IA A

Many variations, e.g. time-correlated models

Zoszf < Ij

t
ZZ@?@US < T
it

Extension: histogram models.




Formulation

Optimization problem: minimize generation cost subject to being feasible
under all modeled renewable outputs. Variables: P9, A\, A

min Z th pot
(P

t k

s.t. the following constraints being feasible at all times ¢, for all w € W:
batteries

renewables -~ N
BO = P+ W'+ wt N - (Z w,f) A — pid

| 6 — 6,,

< Uy for all km (line limits at time t)
Lkm

J

5\? — A? (Z w,f’)

7“}“1“ < 5{; — )\";- <Z wf) < i for all j (discharge rate limits)

t

0
0<E) + A
h=1

< E allj (energy state)




min 303 (R
P9I —

s.t. the following constraints being feasible at all times ¢, for all w € W:

batteries
renewables -~ > ~
BOt = Pot + w4+ wt N - N <Z wf) — pit
i

| O — 6,

< Uy for all km (line limits at time )
Lkm

r];ﬂn < 5\3 — )\3 (Z wf) < 7 for all j (discharge rate limits)
i

5\? — )\f} (Z wf‘)

t

0
0 < E} +A)
h=1

< Ej™ allj (energy state)

Is there a “compact” formulation?

e What is a compact formulation?
e For linear error model: W = {w : Cw < d}, the answer is yes

e But it is going to large, and expensive.

e Factoid: modifications of DC model for large grids are dangeroeus hard for
LP solvers.



How to build a cutting-plane procedure

Consider the balance equations at a given time ¢ (removed from notation)

BO = Pg+w+w+)\—)\<z wi> — p
we can set 8, = 0 where p = reference bus; flow balance can be rewritten

P9+w+w+>\>\<2wi> — pd

1

6 =V

here V' is a pseudo-inverse of B

So for any line km,

Hk: - Hm — (Uk - vm)

Pg+w+w+>\A<Zwi> — p

(4

(vp, = row h of V)



How to build a cutting-plane procedure, 2

Or — 0, = (v — V)

P9+w—|—w+>\—)\<2wi> — p?

1

Suppose that (P9%, A*, A*) is a proposed solution that is infeasible

1.e. there is a line km and an error vector w such that

(0% = ) [PQ* +w+ W+ A= A (Z tbi) - P>
Llem 1
Then the inequality
W =) \po 4t 4 A — A(Z fu%> - P < up
Llm 1

is valid and cuts-off (P9*, A*, \*¥)



A cutting-plane procedure

Start with a relaxation for the robust problem, e.g. the nominal problem
(no errors), and then

1.
2.

Solve relaxation, with solution (P9*, A*, A*)

Play adversary: find a worst-case distribution 0 for (P9*, A*, \*)

Comment: Requires solving small LPs

. Say, e.g. for a given line km,

(0 = U [P9*+w+ W4+ A — A (Z ’wz> — P

Lkm

Comment: could be the reverse flow

. Then we add, to the relaxation, the cut

(Vk — Vi)

Lkm

P9+w+fu§+>\>\<zfu§i> _ p

1

and continue (goto 1).

. Else if the adversary fails, (P9*, A\*, \*) is optimal



Modified Case9 example

250 w

100 4~
Renewables model:
e Output at 4: 50 + wy
e Output at 8: 100 + wsg
e —50 < wy <0, —100 < wg <0,
o 2/wy| + |ws| < 100

300



Nominal case
250 50
s Cost = 1700.65

90

Worst case

250 / 0

cut: —0.36PY — 0.62PY — 0.125X9 — 12.5%¢ < —90.2



Updated nominal case
250 Ve Cost = 2606

90

300

Worst case

250 / 0




A compact formulation (abridged)
A solution (P9, X, A) is safe for a line km if:

P9+w+w+)\)\<2wi> _ p

for all w € W. (Dropped superscript ¢, also should consider line mk).

(Vg — V) < TppmUkm

This is the same as

TemUkm = Max (Uk_vm)
wew

Pg-l—w—l—w—I—)\—)\(Zwi) — p

(4

In the linear model W = {w : Cw < d} this is the same as

P9+w+w+)\)\<2wi> _ pd

ThmUkm > Max (Vg — Upy)

st. Cw < d

or
TemUkm = (Uk_vm) [Pg + w + 5\ — Pd] +
max Z (Vri — Vi) — (Vg — V) A] w;

(4

s.t. Cw < d



A compact formulation (abridged)
A solution (P9, X, A) is safe for a line km if:

(vk—vm) P9 + w+ w+)\)\<z wz> — pe

< LmUkm
for all w € W. (Dropped superscript t). Or,
ThmUem > (U — vm) [PY + @0 + X = P +
max Y [(Uki — Vi) — (Uk — V) A Wi
st. Cw < d
which holds if and only if the following system is feasible
™ >0 (la)
7' Cli = (vp — vii) — (v —v) X for all @ (1b)
ld < zpoup, — (Vg — Um) (Pg — Pl )+ U_}) (1c)

In system (1), the variables 7r should be indexed by km and t.

The system must be added to the nominal formulation for each km and t.
Total number of added variables: (# of lines) x (# of renewables)



