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Experimental Results

Feasible solutions with less than 2% distance from the globally optimality

24-hour problem based on IEEE and European grid data:

• Several relaxation schemes have been proposed for UC and OPF:

SDP
Relaxation

SOCP
Relaxation

TSDP 
Relaxation

An ideal balance between strength and complexity.
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• Non-convex constraints:

• Lifting: Define a number of auxiliary variables:

• The new variables and are defined to linearize the non-convex constraint.

• Whereas and are used to create a stronger relaxation.

• The goal is to design a set of linear and conic inequalities that partially describe the
convex hull of all feasible variables:
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• Semidefinite programming (SDP) relaxation:

• Decomposed SDP: A collection of overlapping subsets are obtained
from a graph-theoretic analysis of the network:

• Second-order cone programming (SOCP):
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• SDP relaxation is computationally expensive while SOCP has poor performance:

• The proposed TSDP relaxation:

• More scalable than SDP and more likely to result in a feasible solution compared to SOCP.
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• Compatible with the AC model of networks,
• Massively scalable,
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• Future directions:
• Incorporation of uncertainties and security

consideration,
• Implementation on GPU: Linear algebra on

3 x 3 matrices has closed-form solutions.
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