A Scalable Semidefinite Relaxation Approach to Grid Scheduling

Ramtin Madani

Department of Electrical Engineering The University of Texas at Arlington

Industrial Engineering and Operations Research University of California, Berkeley

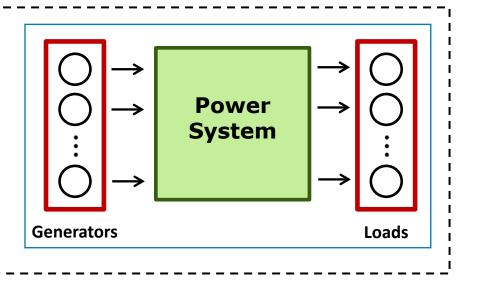
Alper Atamtürk

Ali Davoudi

Department of Electrical Engineering The University of Texas at Arlington

Determine:

- 1. On/off status of generators,
- 2. Power injections,
- 3. Voltages.

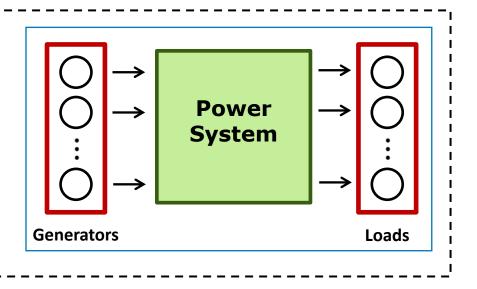


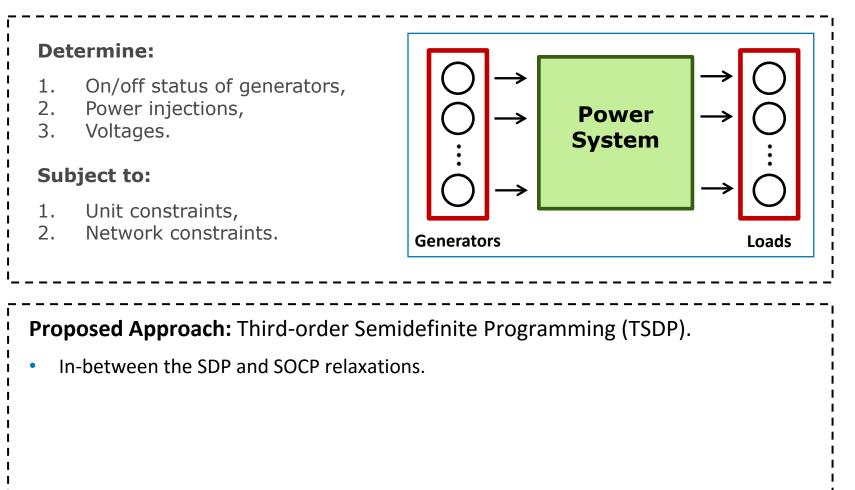
Determine:

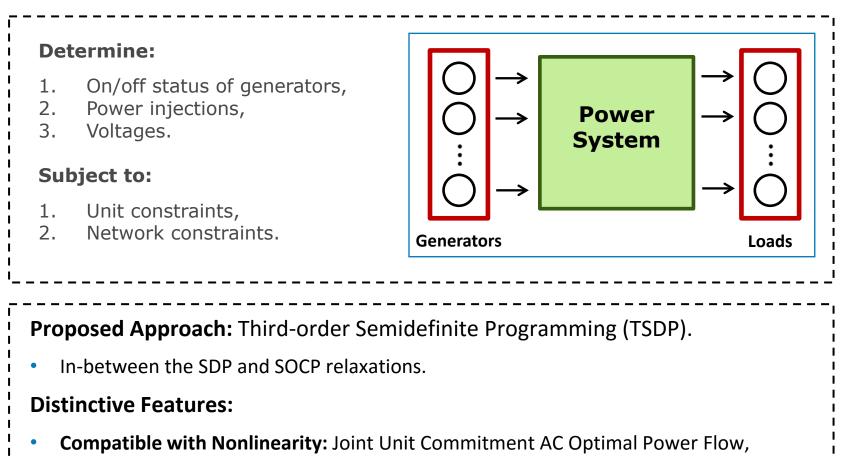
- 1. On/off status of generators,
- 2. Power injections,
- 3. Voltages.

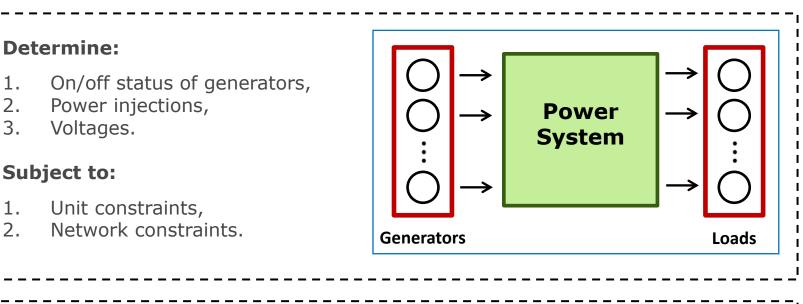
Subject to:

- 1. Unit constraints,
- 2. Network constraints.









Proposed Approach: Third-order Semidefinite Programming (TSDP).

• In-between the SDP and SOCP relaxations.

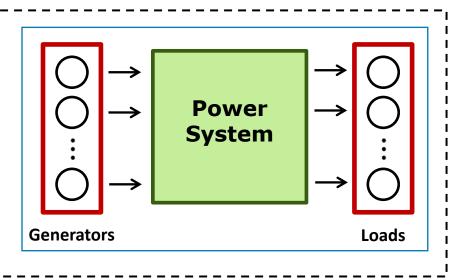
Distinctive Features:

- Compatible with Nonlinearity: Joint Unit Commitment AC Optimal Power Flow,
- Massively Scalable: 24-hour problem with 4000 units in a 13000-bus network,

- 1. On/off status of generators,
- 2. Power injections,
- 3. Voltages.

Subject to:

- 1. Unit constraints,
- 2. Network constraints.



Proposed Approach: Third-order Semidefinite Programming (TSDP).

In-between the SDP and SOCP relaxations.

Distinctive Features:

- Compatible with Nonlinearity: Joint Unit Commitment AC Optimal Power Flow,
- Massively Scalable: 24-hour problem with 4000 units in a 13000-bus network,
- Small Gap: Less than 2% away from global optimality.

24-hour problem based on IEEE and European grid data:

			Linear DC Model				Nonlinear AC Model		
Test Case	Number of Units	Ratio of TSDP Inexact Binaries	TSDP Gap	TSDP Time	CPLEX Gap	CPLEX Time	Ratio of TSDP Inexact Binaries	TSDP Gap	TSDF Time
IEEE 118	54	0 / 1296	0%	3s	3.93%	$10800s^{\dagger}$	0 / 1296	0.01%	11_{2}
IEEE 300	69	0 / 1656	0%	4s	4.08%	$10800 \mathrm{s}^\dagger$	0 / 1656	0.32%	41s
PEGASE 1354	260	42.3 / 6240	0.06%	18s	8.84%	$10800s^{\dagger}$	26.5 /6240	1.26%	4928
PEGASE 2869	510	24.5 / 12240	0.09%	35s	17.21%	$10800 \mathrm{s}^\dagger$	31.1 /12240	0.45%	2199s
PEGASE 9241	1445	$31.1 \ / \ 34680$	0.13%	142s	_	$10800 \mathrm{s}^\dagger$	68.5 / 34680	1.82%	72024s
PEGASE 13659	4092	71.8 / 98280	0.20%	284s	—	$10800 \mathrm{s}^\dagger$	91.8 / 98280	1.17%	101450s

L

260

510

1445

4092

42.3 / 6240

24.5 / 12240

31.1 / 34680

71.8 / 98280

0.06%

0.09%

0.13%

0.20%

н

Т

Т

L

PEGASE 1354

PEGASE 2869

PEGASE 9241

PEGASE 13659

[†] Solver is terminated after 3 hours.

4-hour problem based on IEEE and European grid data:									
Linear DC Model						Nonlinea	ır AC Mod	el	
Test Case	Number of Units	Ratio of TSDP Inexact Binaries	TSDP Gap	TSDP Time	CPLEX Gap	CPLEX Time	Ratio of TSDP Inexact Binaries	TSDP Gap	TSDP Time
IEEE 118	54	0 / 1296	0%	3s	3.93%	$10800 \mathrm{s}^\dagger$	0 / 1296	0.01%	11s
IEEE 300	69	0 / 1656	0%	4s	4.08%	$10800 \mathrm{s}^\dagger$	0 / 1656	0.32%	41s

18s

35s

142s

284s

8.84%

17.21%

_

_

Feasible solutions with less than 2% distance from the globally optimality

 $10800 \mathrm{s}^\dagger$

 $10800 \mathrm{s}^\dagger$

 $10800s^{\dagger}$

 $10800s^{\dagger}$

26.5/6240

31.1 /12240

68.5 / 34680

91.8 / 98280

1.26%

0.45%

1.82%

1.17%

-!

Т

I.

Т

Т

1

I.

Т

1

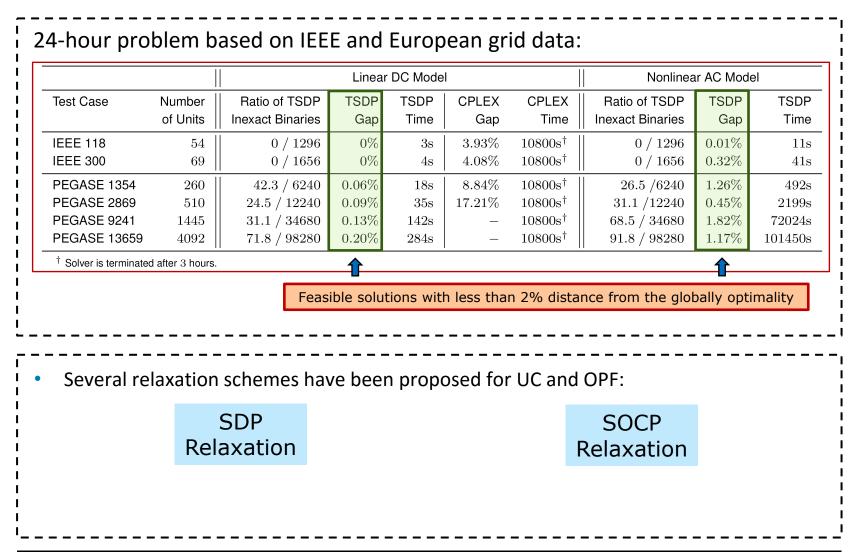
L

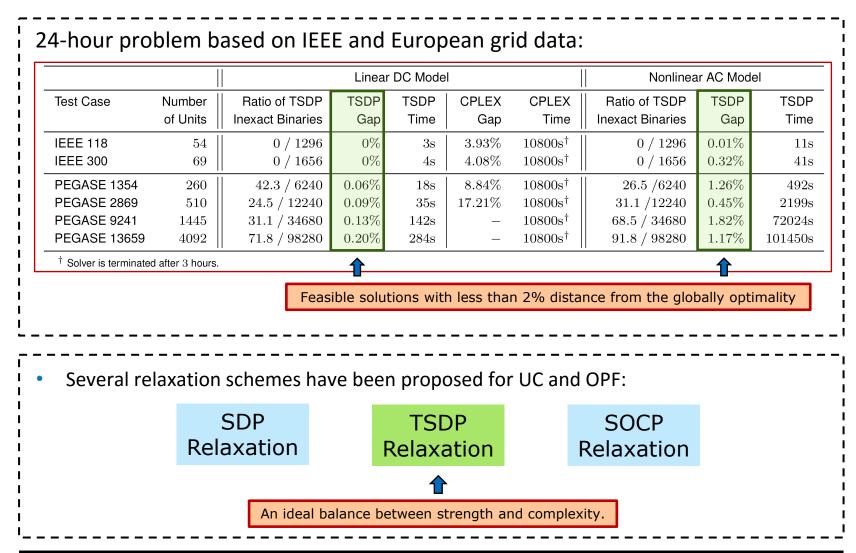
492s

2199s

72024s

101450s





Consider a problem with T time periods and G units: TG $\sum \sum c_{g,t}$ minimize $\mathbf{x},\!\mathbf{p},\!\mathbf{q},\!\mathbf{c}\!\in\!\mathbb{R}^{G\!\times\!T}$ $g = 1 \ t = 1$ $(\mathbf{x}_{g,:}, \mathbf{p}_{g,:}, \mathbf{q}_{g,:}, \mathbf{c}_{g,:}) \in \mathcal{U}_g \qquad \forall g \in \mathcal{G},$ subject to $\forall t \in \mathcal{T},$ $(\mathbf{p}_{:,t},\mathbf{q}_{:,t})\in\mathcal{N}_t$

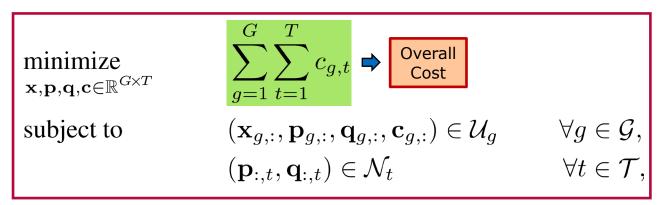
Consider a problem with T time periods and G units: TG $\sum \sum c_{g,t}$ minimize $\mathbf{x}, \mathbf{p}, \mathbf{q}, \mathbf{c} \in \mathbb{R}^{G \times T}$ $q = 1 \ t = 1$ $(\mathbf{x}_{g,:},\mathbf{p}_{g,:},\mathbf{q}_{g,:},\mathbf{c}_{g,:})\in\mathcal{U}_{g}$ $\forall g \in \mathcal{G},$ subject to $(\mathbf{p}_{:,t},\mathbf{q}_{:,t})\in\mathcal{N}_t$ $\forall t \in \mathcal{T},$ $x_{q,t} \in \{0,1\}$ The on/off status of unit g at time t:

Consider a problem with T time periods and G units: GT $\sum \sum c_{g,t}$ minimize $\mathbf{x}, \mathbf{p}, \mathbf{q}, \mathbf{c} \in \mathbb{R}^{G \times T}$ $q = 1 \ t = 1$ $(\mathbf{x}_{q,:},\mathbf{p}_{q,:},\mathbf{q}_{q,:},\mathbf{c}_{q,:})\in\mathcal{U}_{g}$ $\forall g \in \mathcal{G},$ subject to $(\mathbf{p}_{:,t},\mathbf{q}_{:,t})\in\mathcal{N}_t$ $\forall t \in \mathcal{T},$ $x_{q,t} \in \{0,1\}$ The on/off status of unit g at time t: Active power injection of unit g at time t: $p_{q,t}$

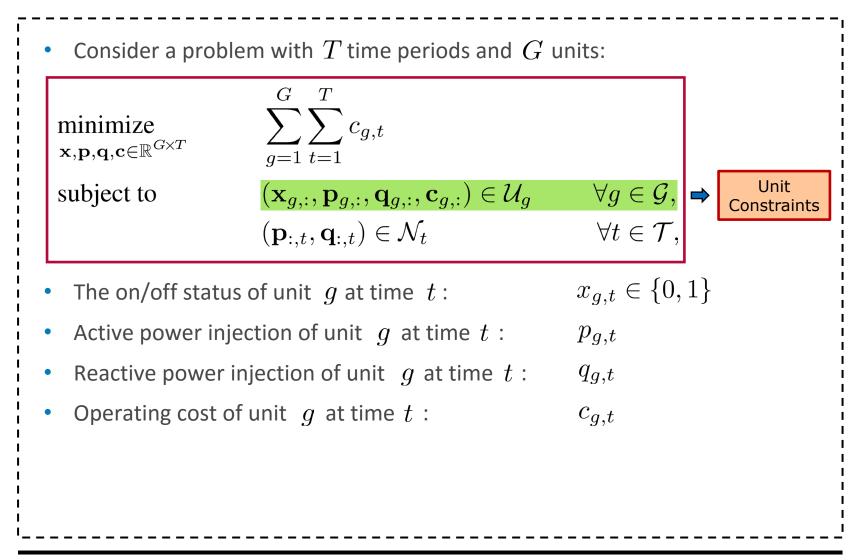
Consider a problem with T time periods and G units: GT $\sum \sum c_{g,t}$ minimize $\mathbf{x}, \mathbf{p}, \mathbf{q}, \mathbf{c} \in \mathbb{R}^{G \times T}$ $q = 1 \ t = 1$ $(\mathbf{x}_{q,:},\mathbf{p}_{q,:},\mathbf{q}_{q,:},\mathbf{c}_{q,:})\in\mathcal{U}_q$ $\forall g \in \mathcal{G},$ subject to $(\mathbf{p}_{:,t},\mathbf{q}_{:,t}) \in \mathcal{N}_t$ $\forall t \in \mathcal{T},$ $x_{q,t} \in \{0,1\}$ The on/off status of unit g at time t: Active power injection of unit g at time t: $p_{q,t}$ Reactive power injection of unit q at time t: $q_{q,t}$

Consider a problem with T time periods and G units: GT $\sum \sum c_{g,t}$ minimize $\mathbf{x}, \mathbf{p}, \mathbf{q}, \mathbf{c} \in \mathbb{R}^{G \times T}$ $q = 1 \ t = 1$ $(\mathbf{x}_{q,:},\mathbf{p}_{q,:},\mathbf{q}_{q,:},\mathbf{c}_{q,:})\in\mathcal{U}_q$ $\forall g \in \mathcal{G},$ subject to $(\mathbf{p}_{:,t},\mathbf{q}_{:,t}) \in \mathcal{N}_t$ $\forall t \in \mathcal{T},$ $x_{q,t} \in \{0,1\}$ The on/off status of unit q at time t: Active power injection of unit g at time t: $p_{q,t}$ Reactive power injection of unit q at time t: $q_{q,t}$ Operating cost of unit q at time t: $c_{q,t}$

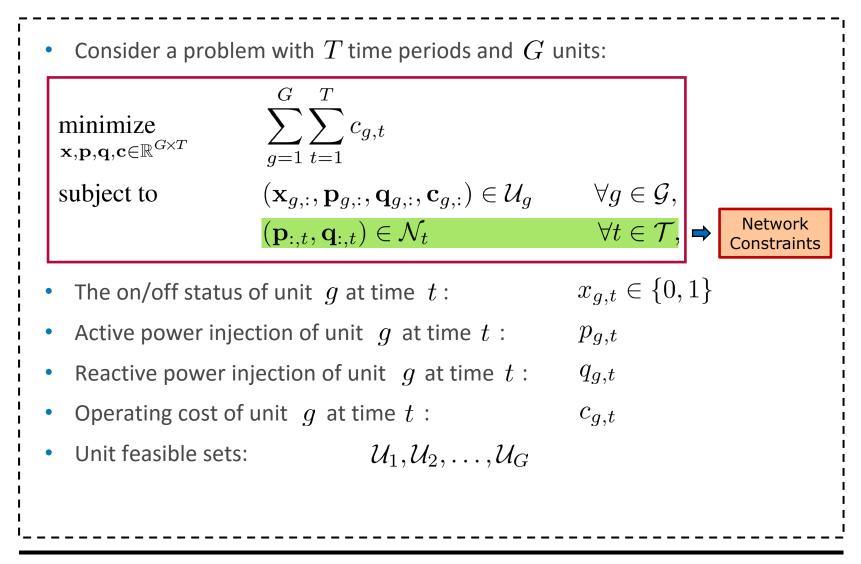
• Consider a problem with T time periods and G units:



- The on/off status of unit $\,g$ at time $\,t:\qquad \qquad x_{g,t}\in\{0,1\}$
- Active power injection of unit g at time t : $p_{g,t}$
- Reactive power injection of unit g at time t : $q_{g,t}$
- Operating cost of unit g at time t : $c_{g,t}$



Consider a problem with T time periods and G units: GT $\sum \sum c_{g,t}$ minimize $\mathbf{x}, \mathbf{p}, \mathbf{q}, \mathbf{c} \in \mathbb{R}^{G imes T}$ a = 1 t = 1 $(\mathbf{x}_{q,:},\mathbf{p}_{q,:},\mathbf{q}_{q,:},\mathbf{c}_{q,:})\in\mathcal{U}_{g}$ subject to $\forall g \in \mathcal{G},$ $(\mathbf{p}_{:,t},\mathbf{q}_{:,t}) \in \mathcal{N}_t$ $\forall t \in \mathcal{T},$ $x_{q,t} \in \{0,1\}$ The on/off status of unit q at time t: Active power injection of unit g at time t: $p_{q,t}$ Reactive power injection of unit q at time t: $q_{q,t}$ Operating cost of unit q at time t: $c_{q,t}$ Unit feasible sets: $\mathcal{U}_1, \mathcal{U}_2, \ldots, \mathcal{U}_G$

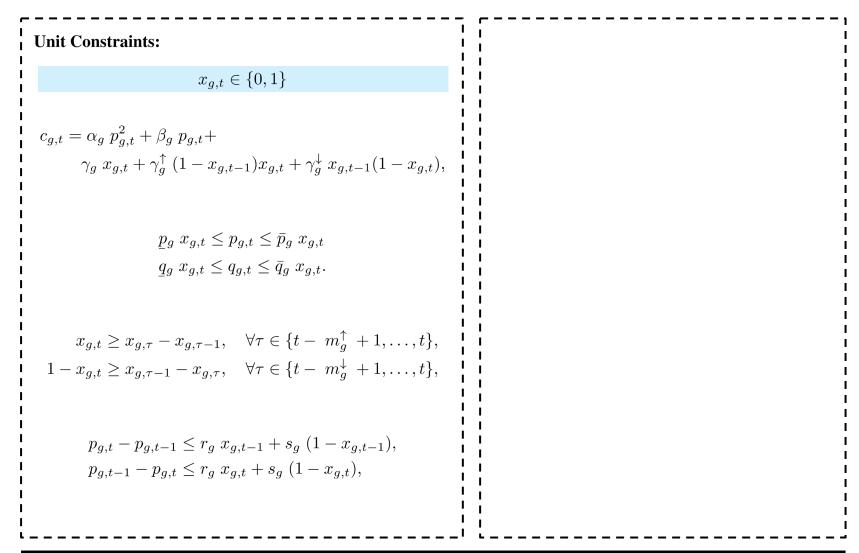


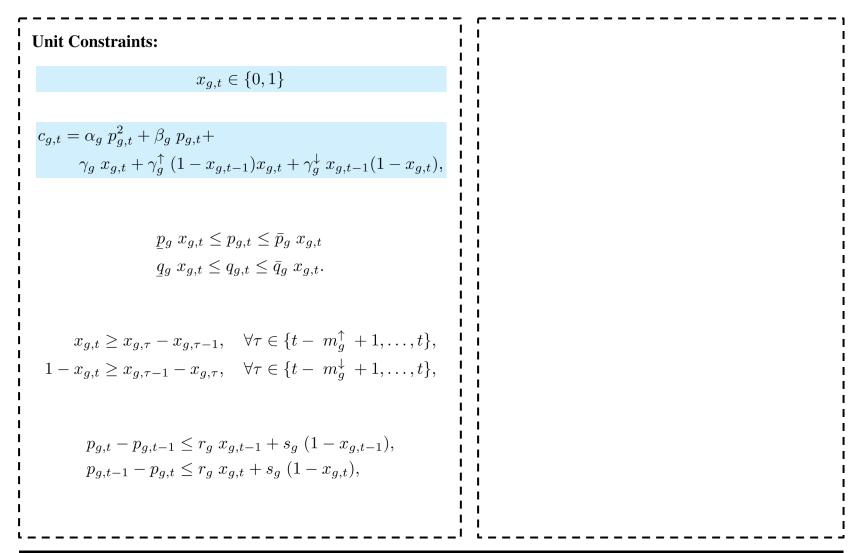
Consider a problem with T time periods and G units: GT $\sum \sum c_{g,t}$ minimize $\mathbf{x}, \mathbf{p}, \mathbf{q}, \mathbf{c} \in \mathbb{R}^{G imes T}$ a = 1 t = 1 $(\mathbf{x}_{q,:},\mathbf{p}_{q,:},\mathbf{q}_{q,:},\mathbf{c}_{q,:})\in\mathcal{U}_q$ $\forall g \in \mathcal{G},$ subject to $(\mathbf{p}_{:,t},\mathbf{q}_{:,t}) \in \mathcal{N}_t$ $\forall t \in \mathcal{T},$ $x_{q,t} \in \{0,1\}$ The on/off status of unit q at time t: Active power injection of unit q at time t: $p_{q,t}$ $q_{q,t}$ Reactive power injection of unit q at time t: Operating cost of unit q at time t: $c_{q,t}$ Unit feasible sets: $\mathcal{U}_1, \mathcal{U}_2, \ldots, \mathcal{U}_G$ $\mathcal{N}_1, \mathcal{N}_2, \ldots, \mathcal{N}_T$ Network feasible sets:

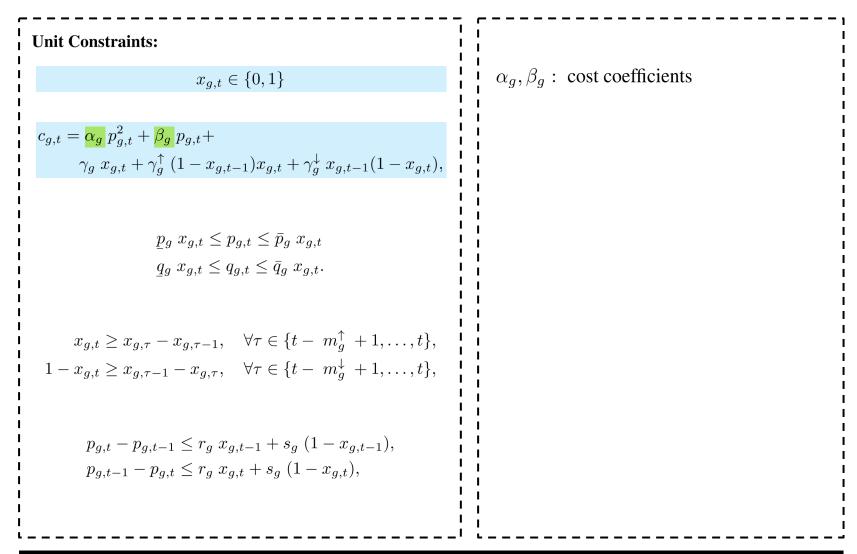
Consider a problem with T time periods and G units: T $\sum \sum c_{g,t}$ minimize $\mathbf{x}, \mathbf{p}, \mathbf{q}, \mathbf{c} \in \mathbb{R}^{G \times T}$ q = 1 t = 1 $(\mathbf{x}_{q,:},\mathbf{p}_{q,:},\mathbf{q}_{q,:},\mathbf{c}_{q,:})\in\mathcal{U}_q$ $\forall g \in \mathcal{G},$ subject to $(\mathbf{p}_{:,t},\mathbf{q}_{:,t}) \in \mathcal{N}_t$ $\forall t \in \mathcal{T},$ $x_{q,t} \in \{0,1\}$ The on/off status of unit q at time t: Active power injection of unit q at time t: $p_{q,t}$ $q_{q,t}$ Reactive power injection of unit q at time t: Operating cost of unit q at time t: $c_{q,t}$ Unit feasible sets: $\mathcal{U}_1, \mathcal{U}_2, \ldots, \mathcal{U}_G \implies$ Discrete Parameters $\mathcal{N}_1, \mathcal{N}_2, \ldots, \mathcal{N}_T$ Network feasible sets:

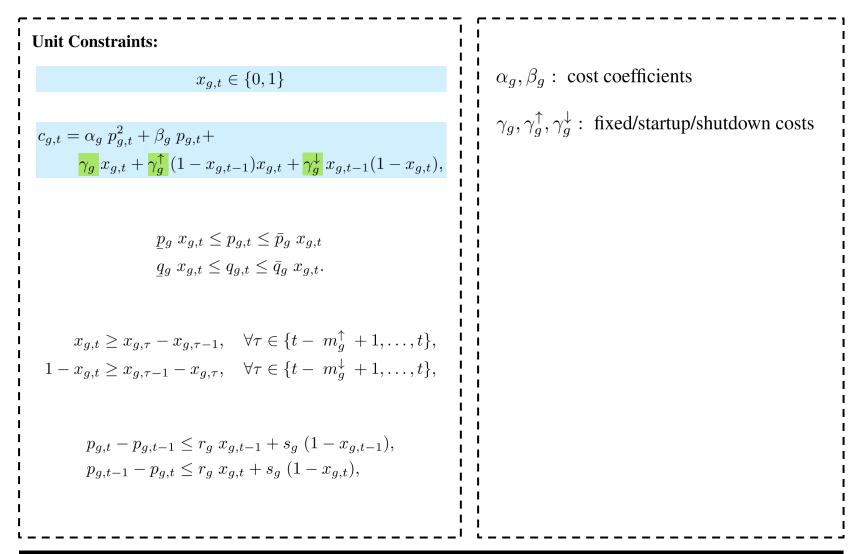
Consider a problem with T time periods and G units: T $\sum \sum c_{g,t}$ minimize $\mathbf{x}, \mathbf{p}, \mathbf{q}, \mathbf{c} \in \mathbb{R}^{G imes T}$ q = 1 t = 1 $(\mathbf{x}_{q,:},\mathbf{p}_{q,:},\mathbf{q}_{q,:},\mathbf{c}_{q,:})\in\mathcal{U}_q$ $\forall g \in \mathcal{G},$ subject to $(\mathbf{p}_{:,t},\mathbf{q}_{:,t}) \in \mathcal{N}_t$ $\forall t \in \mathcal{T},$ $x_{q,t} \in \{0,1\}$ The on/off status of unit q at time t: Active power injection of unit q at time t: $p_{q,t}$ $q_{q,t}$ Reactive power injection of unit q at time t: Operating cost of unit q at time t: $c_{q,t}$ Unit feasible sets: $\mathcal{U}_1, \mathcal{U}_2, \ldots, \mathcal{U}_G \implies$ **Discrete Parameters** $\mathcal{N}_1, \mathcal{N}_2, \dots, \mathcal{N}_T$ Network feasible sets: Nonlinear Equations

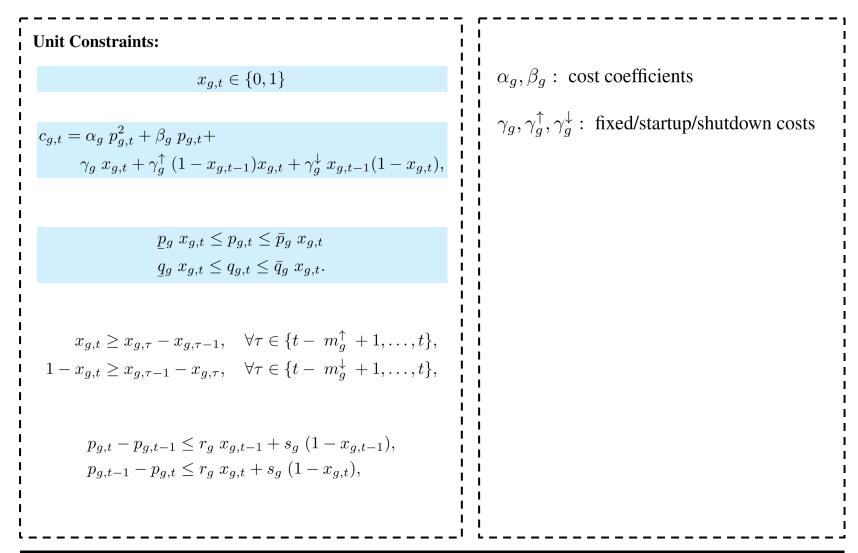
Unit Constraints:		
$x_{g,t} \in \{0,1\}$		
$c_{g,t} = \alpha_g \ p_{g,t}^2 + \beta_g \ p_{g,t} + \gamma_g^{\uparrow} \ (1 - x_{g,t-1}) x_{g,t} + \gamma_g^{\downarrow} \ x_{g,t-1} (1 - x_{g,t}),$		
$egin{array}{ll} \underline{p}_g \; x_{g,t} \leq p_{g,t} \leq ar{p}_g \; x_{g,t} \ \underline{q}_g \; x_{g,t} \leq q_{g,t} \leq ar{q}_g \; x_{g,t}. \end{array}$		
$x_{g,t} \ge x_{g,\tau} - x_{g,\tau-1}, \forall \tau \in \{t - m_g^{\uparrow} + 1, \dots, t\}, \\ 1 - x_{g,t} \ge x_{g,\tau-1} - x_{g,\tau}, \forall \tau \in \{t - m_g^{\downarrow} + 1, \dots, t\},$		
$p_{g,t} - p_{g,t-1} \le r_g \ x_{g,t-1} + s_g \ (1 - x_{g,t-1}),$ $p_{g,t-1} - p_{g,t} \le r_g \ x_{g,t} + s_g \ (1 - x_{g,t}),$		
 	 	i

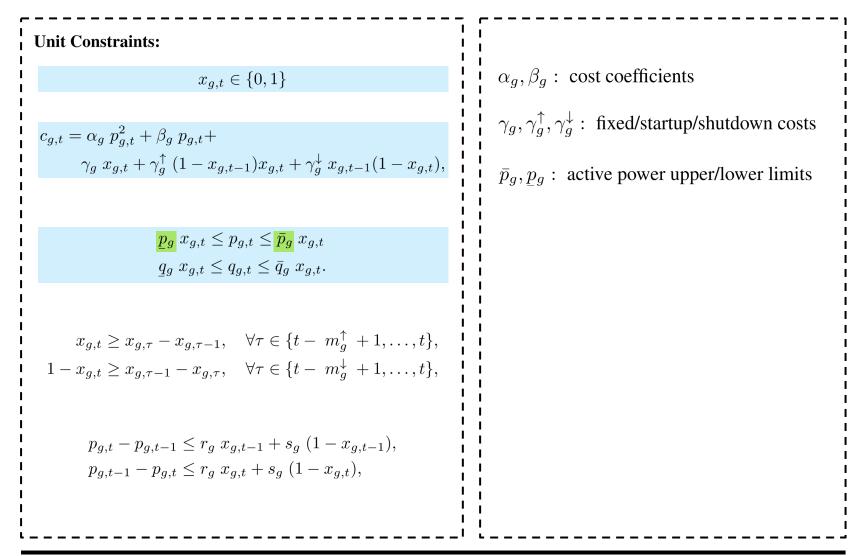












α_g, β_g : cost coefficients $\gamma_g, \gamma_g^{\uparrow}, \gamma_g^{\downarrow}$: fixed/startup/shutdown costs
$\bar{p}_g, \underline{p}_g$: active power upper/lower limits $\bar{q}_g, \underline{q}_g$: reactive power upper/lower limits

Unit Constraints: $x_{g,t} \in \{0,1\}$ $c_{g,t} = lpha_g \; p_{g,t}^2 + eta_g \; p_{g,t} +$	α_g, β_g : cost coefficients $\gamma_g, \gamma_g^{\uparrow}, \gamma_g^{\downarrow}$: fixed/startup/shutdown costs
$\gamma_g x_{g,t} + \gamma_g^{\uparrow} (1 - x_{g,t-1}) x_{g,t} + \gamma_g^{\downarrow} x_{g,t-1} (1 - x_{g,t}),$	$\bar{p}_g, \underline{p}_g$: active power upper/lower limits \bar{q}_g, q_g : reactive power upper/lower limits
$ \underline{p}_g \ x_{g,t} \leq p_{g,t} \leq \overline{p}_g \ x_{g,t} $ $ \underline{q}_g \ x_{g,t} \leq q_{g,t} \leq \overline{q}_g \ x_{g,t}. $	
$x_{g,t} \ge x_{g,\tau} - x_{g,\tau-1}, \forall \tau \in \{t - m_g^{\uparrow} + 1, \dots, t\}, \\ 1 - x_{g,t} \ge x_{g,\tau-1} - x_{g,\tau}, \forall \tau \in \{t - m_g^{\downarrow} + 1, \dots, t\},$	
$p_{g,t} - p_{g,t-1} \le r_g \ x_{g,t-1} + s_g \ (1 - x_{g,t-1}),$ $p_{g,t-1} - p_{g,t} \le r_g \ x_{g,t} + s_g \ (1 - x_{g,t}),$	

Unit Constraints: $x_{g,t} \in \{0,1\}$ $c_{g,t} = \alpha_g \ p_{g,t}^2 + \beta_g \ p_{g,t} + \gamma_g^{\uparrow} \ x_{g,t} + \gamma_g^{\uparrow} \ (1 - x_{g,t-1}) x_{g,t} + \gamma_g^{\downarrow} \ x_{g,t-1} (1 - x_{g,t}),$ $\frac{\underline{p}_g \ x_{g,t} \le p_{g,t} \le \overline{p}_g \ x_{g,t}}{q_g \ x_{g,t} \le q_{g,t} \le \overline{q}_g \ x_{g,t}}.$	α_g, β_g : cost coefficients $\gamma_g, \gamma_g^{\uparrow}, \gamma_g^{\downarrow}$: fixed/startup/shutdown costs $\bar{p}_g, \underline{p}_g$: active power upper/lower limits $\bar{q}_g, \underline{q}_g$: reactive power upper/lower limits
$\begin{split} x_{g,t} &\geq x_{g,\tau} - x_{g,\tau-1}, \forall \tau \in \{t - m_g^{\uparrow} + 1, \dots, t\}, \\ 1 - x_{g,t} &\geq x_{g,\tau-1} - x_{g,\tau}, \forall \tau \in \{t - m_g^{\downarrow} + 1, \dots, t\}, \\ p_{g,t} - p_{g,t-1} &\leq r_g \; x_{g,t-1} + s_g \; (1 - x_{g,t-1}), \\ p_{g,t-1} - p_{g,t} &\leq r_g \; x_{g,t} + s_g \; (1 - x_{g,t}), \end{split}$	$m_g^\uparrow, m^\downarrow$: minimum up/down limits

Unit Constraints:	
$x_{g,t} \in \{0,1\}$	α_g, β_g : cost coefficients
$c_{g,t} = \alpha_g \ p_{g,t}^2 + \beta_g \ p_{g,t} + \gamma_g^{\uparrow} \ x_{g,t} + \gamma_g^{\uparrow} \ (1 - x_{g,t-1}) x_{g,t} + \gamma_g^{\downarrow} \ x_{g,t-1} (1 - x_{g,t}),$	$\gamma_g, \gamma_g^{\uparrow}, \gamma_g^{\downarrow}$: fixed/startup/shutdown costs \bar{p}_g, \bar{p}_g : active power upper/lower limits
$egin{array}{ll} \underline{p}_g \; x_{g,t} \leq p_{g,t} \leq ar{p}_g \; x_{g,t} \ \underline{q}_g \; x_{g,t} \leq q_{g,t} \leq ar{q}_g \; x_{g,t}. \end{array}$	$\bar{q}_g, \underline{q}_g$: reactive power upper/lower limits $m_g^{\uparrow}, m^{\downarrow}$: minimum up/down limits
$x_{g,t} \ge x_{g,\tau} - x_{g,\tau-1}, \forall \tau \in \{t - m_g^{\uparrow} + 1, \dots, t\}, \\ 1 - x_{g,t} \ge x_{g,\tau-1} - x_{g,\tau}, \forall \tau \in \{t - m_g^{\downarrow} + 1, \dots, t\},$	
$p_{g,t} - p_{g,t-1} \le r_g \ x_{g,t-1} + s_g \ (1 - x_{g,t-1}),$ $p_{g,t-1} - p_{g,t} \le r_g \ x_{g,t} + s_g \ (1 - x_{g,t}),$	

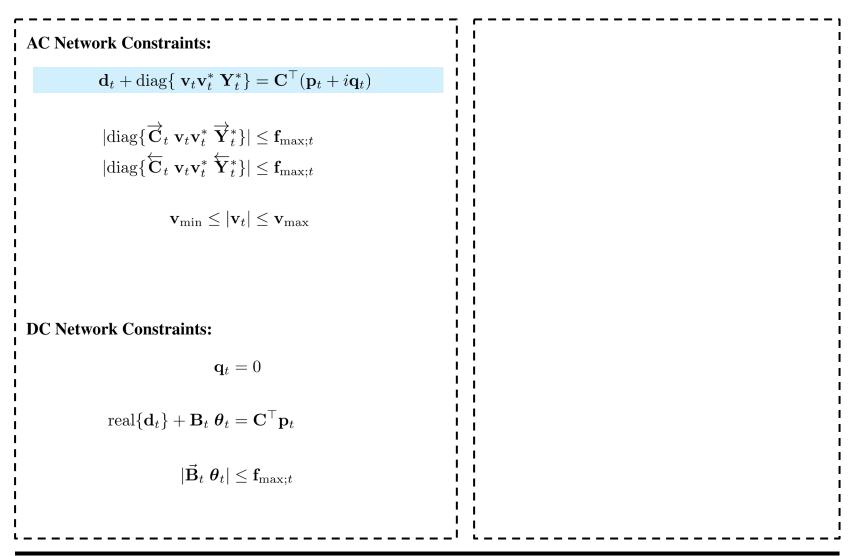
Unit Constraints: $x_{g,t} \in \{0,1\}$ $c_{g,t} = \alpha_g \ p_{g,t}^2 + \beta_g \ p_{g,t} + \gamma_g \ x_{g,t} + \gamma_g^{\uparrow} \ (1 - x_{g,t-1}) x_{g,t} + \gamma_g^{\downarrow} \ x_{g,t-1} (1 - x_{g,t}),$ $\underline{p}_g \ x_{g,t} \le p_{g,t} \le \overline{p}_g \ x_{g,t}$	α_g, β_g : cost coefficients $\gamma_g, \gamma_g^{\uparrow}, \gamma_g^{\downarrow}$: fixed/startup/shutdown costs $\bar{p}_g, \underline{p}_g$: active power upper/lower limits $\bar{q}_g, \underline{q}_g$: reactive power upper/lower limits
$\underline{q}_g \; x_{g,t} \leq q_{g,t} \leq \overline{q}_g \; x_{g,t}.$	$m_g^{\uparrow}, m^{\downarrow}$: minimum up/down limits r_g, s_g : ramp rate limits
$x_{g,t} \ge x_{g,\tau} - x_{g,\tau-1}, \forall \tau \in \{t - m_g^{\uparrow} + 1, \dots, t\}, \\ 1 - x_{g,t} \ge x_{g,\tau-1} - x_{g,\tau}, \forall \tau \in \{t - m_g^{\downarrow} + 1, \dots, t\},$	
$p_{g,t} - p_{g,t-1} \leq \frac{r_g}{r_g} x_{g,t-1} + \frac{s_g}{s_g} (1 - x_{g,t-1}),$ $p_{g,t-1} - p_{g,t} \leq \frac{r_g}{r_g} x_{g,t} + \frac{s_g}{s_g} (1 - x_{g,t}),$	

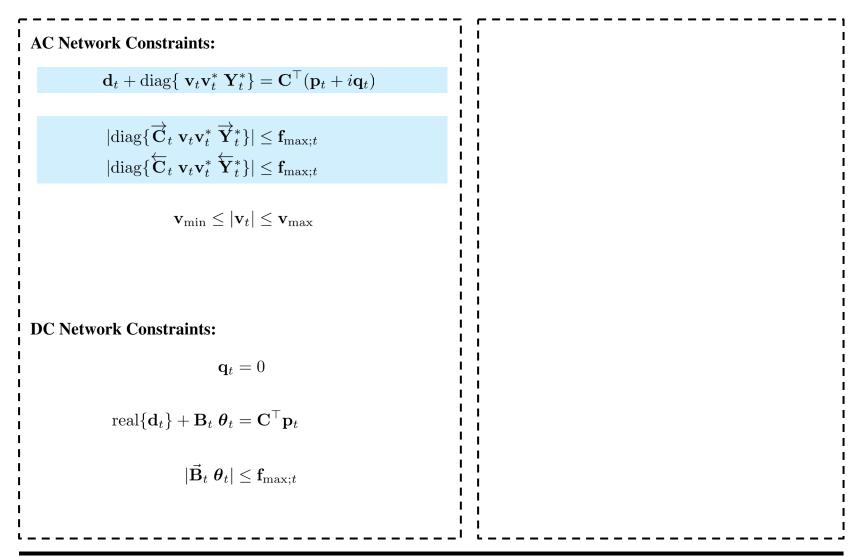
Unit Constraints:	
$x_{g,t} \in \{0,1\}$	α_g, β_g : cost coefficients
$c_{g,t} = \alpha_g \ p_{g,t}^2 + \beta_g \ p_{g,t} + \gamma_g^{\uparrow} \ (1 - x_{g,t-1}) x_{g,t} + \gamma_g^{\downarrow} \ x_{g,t-1} (1 - x_{g,t}),$	$\gamma_g, \gamma_g^{\uparrow}, \gamma_g^{\downarrow}$: fixed/startup/shutdown costs $\bar{p}_g, \underline{p}_g$: active power upper/lower limits
$ \begin{array}{l} \underline{p}_g \; x_{g,t} \leq p_{g,t} \leq \bar{p}_g \; x_{g,t} \\ \underline{q}_g \; x_{g,t} \leq q_{g,t} \leq \bar{q}_g \; x_{g,t}. \end{array} $	$\bar{q}_g, \underline{q}_g$: reactive power upper/lower limits $m_g^{\uparrow}, m^{\downarrow}$: minimum up/down limits
$\begin{aligned} x_{g,t} &\geq x_{g,\tau} - x_{g,\tau-1}, \forall \tau \in \{t - m_g^{\uparrow} + 1, \dots, t\}, \\ 1 - x_{g,t} &\geq x_{g,\tau-1} - x_{g,\tau}, \forall \tau \in \{t - m_g^{\downarrow} + 1, \dots, t\}, \end{aligned}$	r_g, s_g : ramp rate limits
$p_{g,t} - p_{g,t-1} \le r_g \ x_{g,t-1} + s_g \ (1 - x_{g,t-1}),$ $p_{g,t-1} - p_{g,t} \le r_g \ x_{g,t} + s_g \ (1 - x_{g,t}),$	

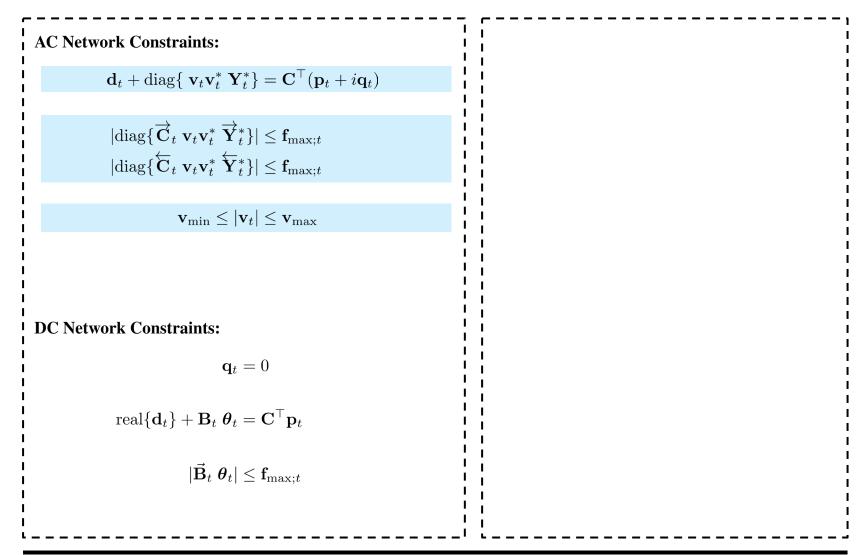
Unit Constraints

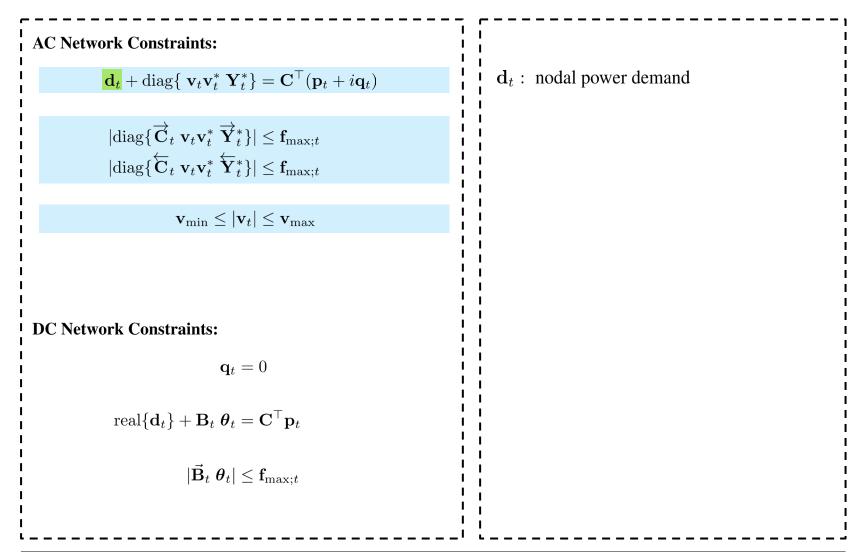
Unit Constraints: $x_{q,t} \in \{0,1\}$	α_g, β_g : cost coefficients
$c_{g,t} = \alpha_g \ p_{g,t}^2 + \beta_g \ p_{g,t} + \gamma_q^{\uparrow} \ (1 - x_{q,t-1}) x_{q,t} + \gamma_q^{\downarrow} \ x_{q,t-1} (1 - x_{q,t}),$	$\gamma_g, \gamma_g^{\uparrow}, \gamma_g^{\downarrow}$: fixed/startup/shutdown costs
$p_{q} x_{q,t} \leq p_{q,t} \leq \bar{p}_{q} x_{q,t}$	$\bar{p}_g, \underline{p}_g$: active power upper/lower limits $\bar{q}_g, \underline{q}_g$: reactive power upper/lower limits
$\underline{\underline{P}} g \ ^{\omega} g, t \ = Pg, t \ = Pg \ ^{\omega} g, t$ $\underline{q}_g \ x_{g,t} \le q_{g,t} \le \overline{q}_g \ x_{g,t}.$	$m_g^{\uparrow}, m^{\downarrow}$: minimum up/down limits
$x_{g,t} \ge x_{g,\tau} - x_{g,\tau-1}, \forall \tau \in \{t - m_g^{\uparrow} + 1, \dots, t\}, \\ 1 - x_{g,t} \ge x_{g,\tau-1} - x_{g,\tau}, \forall \tau \in \{t - m_g^{\downarrow} + 1, \dots, t\},$	r_g, s_g : ramp rate limits
$p_{g,t} - p_{g,t-1} \le r_g \ x_{g,t-1} + s_g \ (1 - x_{g,t-1}),$	Definition. For every generating unit $g \in \mathcal{G}$, define \mathcal{U}_g to be the set of all quadruplets $(\mathbf{x}_{g,:}, \mathbf{p}_{g,:}, \mathbf{q}_{g,:}, \mathbf{c}_{g,:}) \in \mathbb{R}^{T \times 4}$ that satisfies
$p_{g,t-1} - p_{g,t} \le r_g \ x_{g,t} + s_g \ (1 - x_{g,t}),$	the unit constraints, for all $t \in \mathcal{T}$.

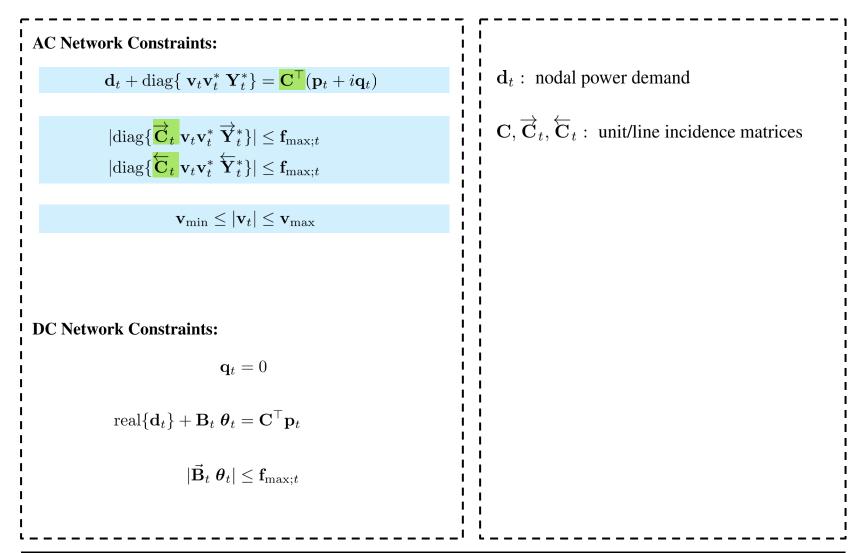
AC Network Constraints:	
$\mathbf{d}_t + \operatorname{diag}\{ \mathbf{v}_t \mathbf{v}_t^* \mathbf{Y}_t^* \} = \mathbf{C}^\top (\mathbf{p}_t + i\mathbf{q}_t)$	
$ ext{diag}\{\overrightarrow{\mathbf{C}}_t \ \mathbf{v}_t \mathbf{v}_t^* \ \overrightarrow{\mathbf{Y}}_t^*\} \leq \mathbf{f}_{\max;t}$	
$ \operatorname{diag}\{\overleftarrow{\mathbf{C}}_t \mathbf{v}_t \mathbf{v}_t^* \ \overleftarrow{\mathbf{Y}}_t^*\} \leq \mathbf{f}_{\max;t}$	
$ \mathbf{v}_{\min} \leq \mathbf{v}_t \leq \mathbf{v}_{\max}$	
DC Network Constraints:	
$\mathbf{q}_t = 0$	
$ ext{real}\{\mathbf{d}_t\} + \mathbf{B}_t \; oldsymbol{ heta}_t = \mathbf{C}^ op \mathbf{p}_t$	
$ ec{\mathbf{B}}_t \; oldsymbol{ heta}_t \leq \mathbf{f}_{ ext{max};t}$	

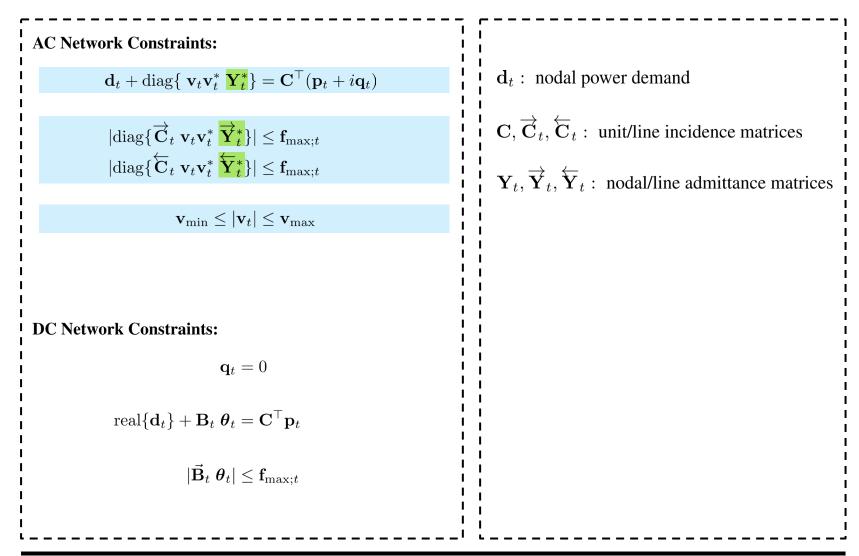


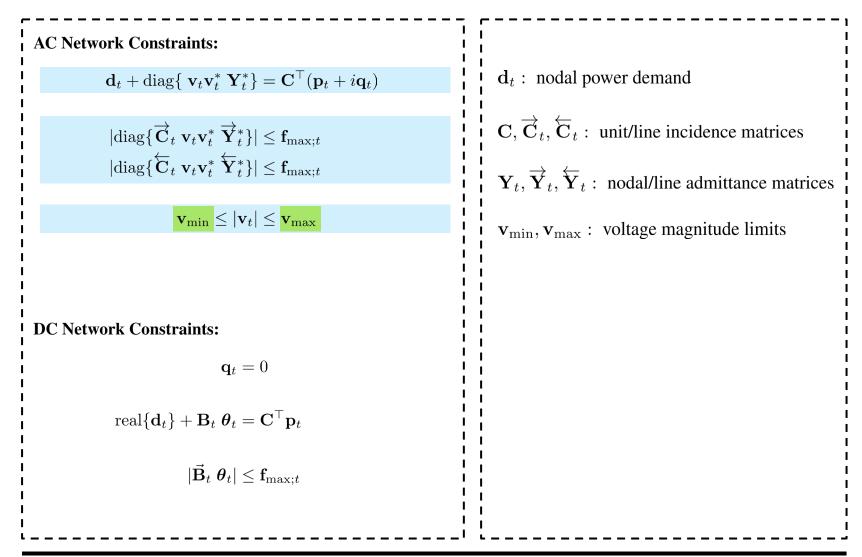


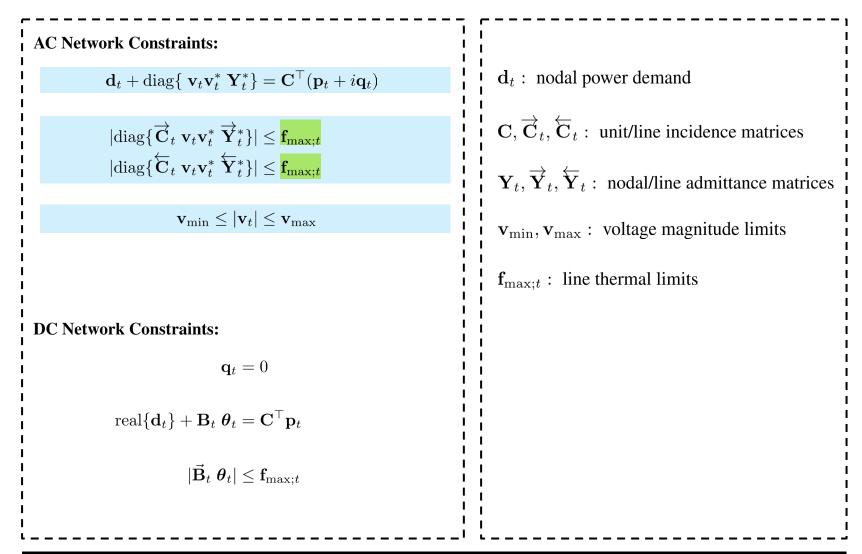


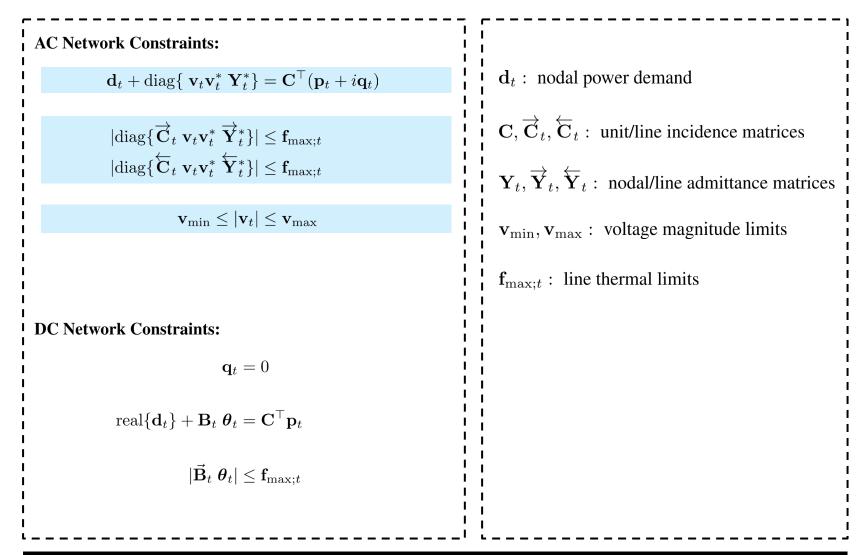


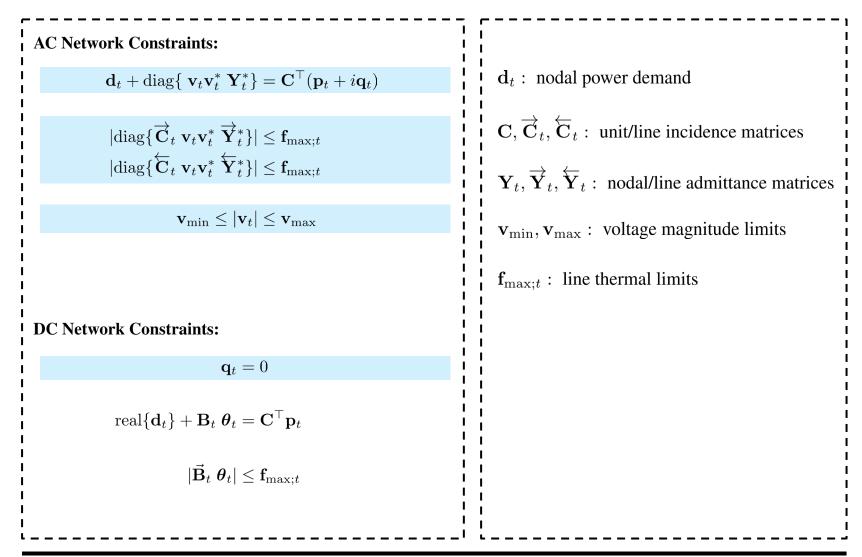


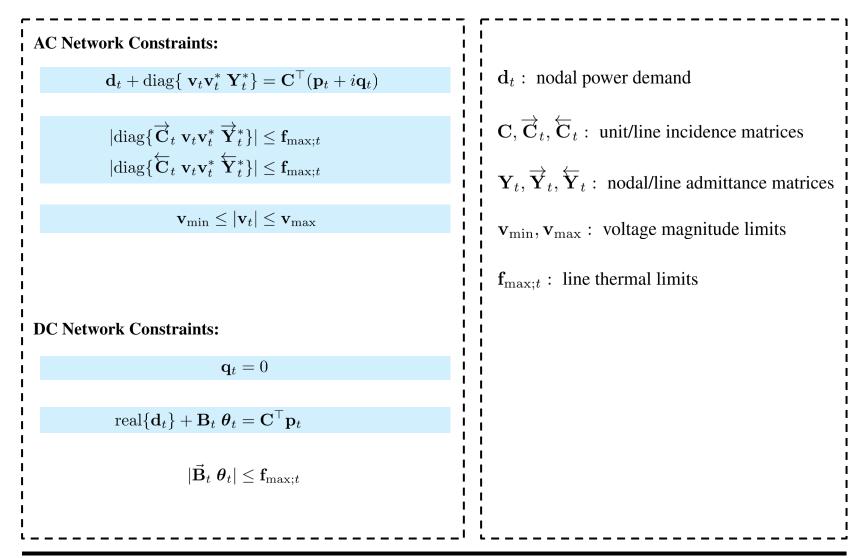


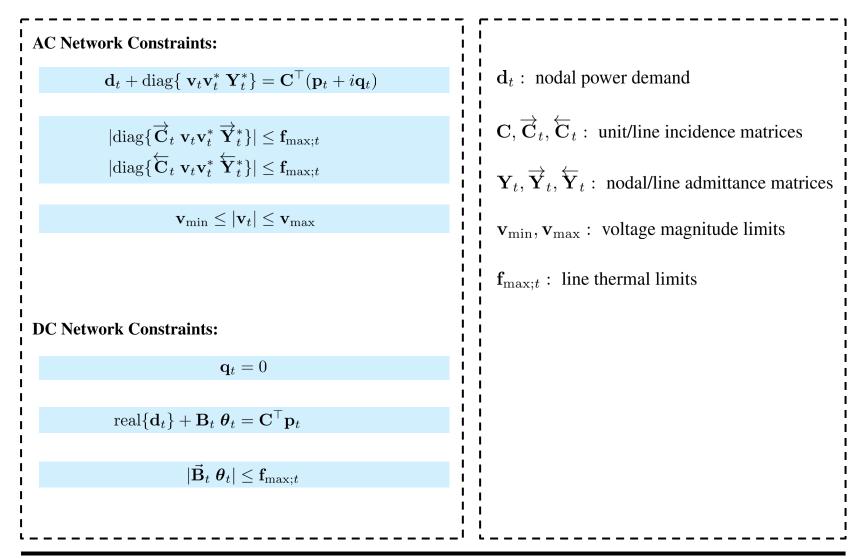


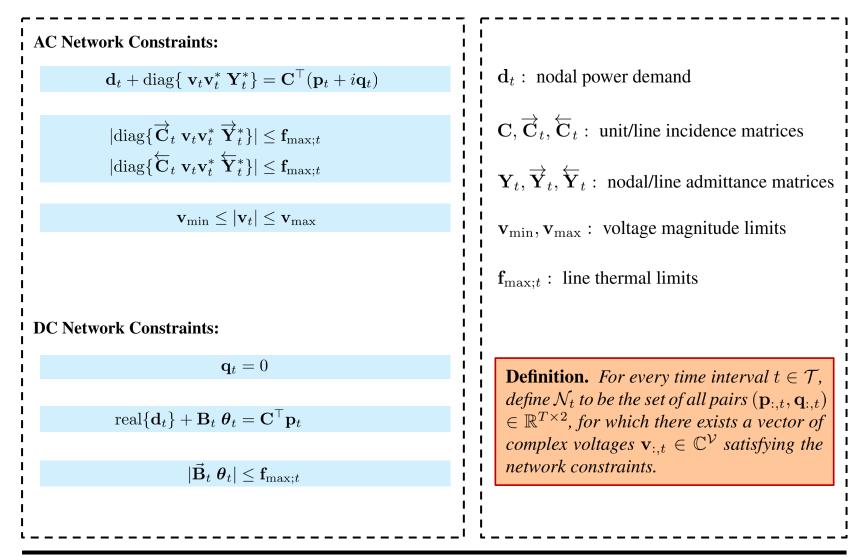




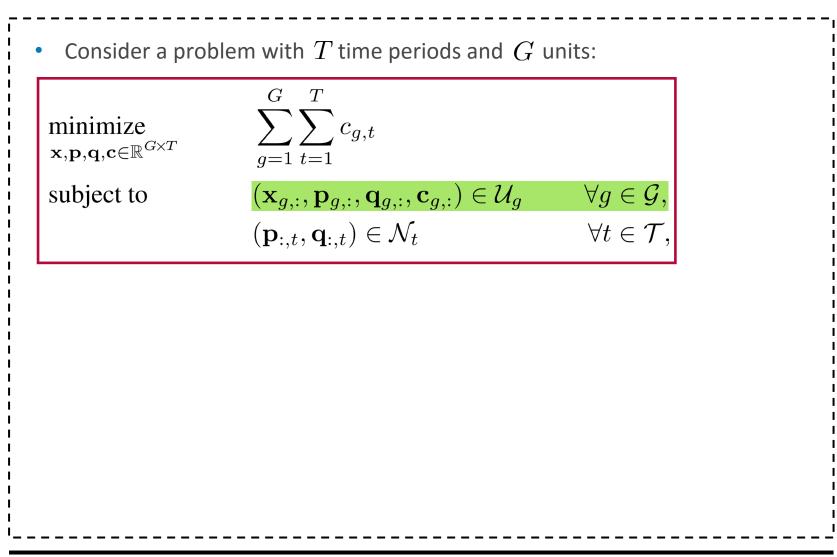


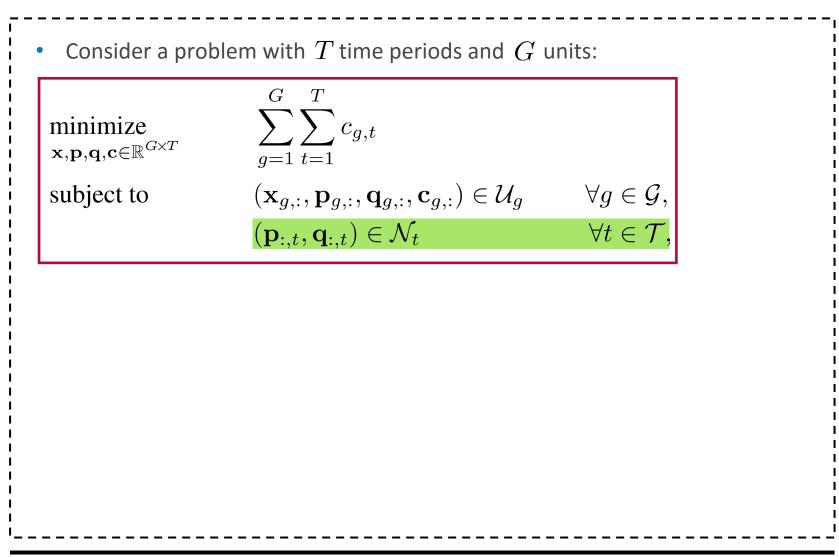






Consider a problem with T time periods and G units: GT $\sum \sum c_{g,t}$ minimize $\mathbf{x},\!\mathbf{p},\!\mathbf{q},\!\mathbf{c}\!\in\!\mathbb{R}^{G\!\times\!T}$ $g = 1 \ t = 1$ $(\mathbf{x}_{g,:}, \mathbf{p}_{g,:}, \mathbf{q}_{g,:}, \mathbf{c}_{g,:}) \in \mathcal{U}_g \qquad \forall g \in \mathcal{G},$ subject to $\forall t \in \mathcal{T},$ $(\mathbf{p}_{:,t},\mathbf{q}_{:,t})\in\mathcal{N}_t$



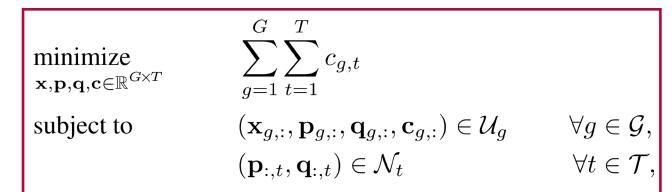


• Consider a problem with T time periods and $\,G$ units:

$\begin{array}{l} \text{minimize} \\ \mathbf{x}, \mathbf{p}, \mathbf{q}, \mathbf{c} \in \mathbb{R}^{G \times T} \end{array}$	$\sum_{g=1}^{G} \sum_{t=1}^{T} c_{g,t}$	
subject to	$(\mathbf{x}_{g,:},\mathbf{p}_{g,:},\mathbf{q}_{g,:},\mathbf{c}_{g,:})\in\mathcal{U}_g$	$\forall g \in \mathcal{G},$
	$(\mathbf{p}_{:,t},\mathbf{q}_{:,t})\in\mathcal{N}_t$	$\forall t \in \mathcal{T},$

• A convex relaxation can be created by replacing \mathcal{U}_g and \mathcal{N}_t with their convex surrogates.

• Consider a problem with T time periods and $\,G$ units:



• A convex relaxation can be created by replacing \mathcal{U}_g and \mathcal{N}_t with their convex surrogates.

 $\mathcal{U}_{a}^{\mathrm{TSDP}}$

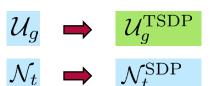
• Unit feasible sets: $\mathcal{U}_g \Rightarrow$

Consider a problem with T time periods and G units: •

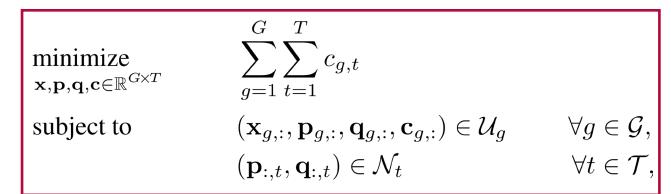
 \mathcal{N}_t

$egin{array}{l} { m minimize} \ {f x}, {f p}, {f q}, {f c} \in \mathbb{R}^{G imes T} \end{array}$	$\sum_{g=1}^{G} \sum_{t=1}^{T} c_{g,t}$	
subject to	$(\mathbf{x}_{g,:},\mathbf{p}_{g,:},\mathbf{q}_{g,:},\mathbf{c}_{g,:})\in\mathcal{U}_g$	$\forall g \in \mathcal{G},$
	$(\mathbf{p}_{:,t},\mathbf{q}_{:,t})\in\mathcal{N}_t$	$\forall t \in \mathcal{T},$

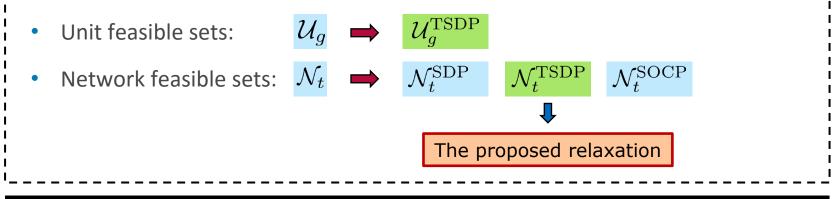
- A convex relaxation can be created by replacing \mathcal{U}_q and \mathcal{N}_t with their convex surrogates.
- Unit feasible sets:
 - Network feasible sets:



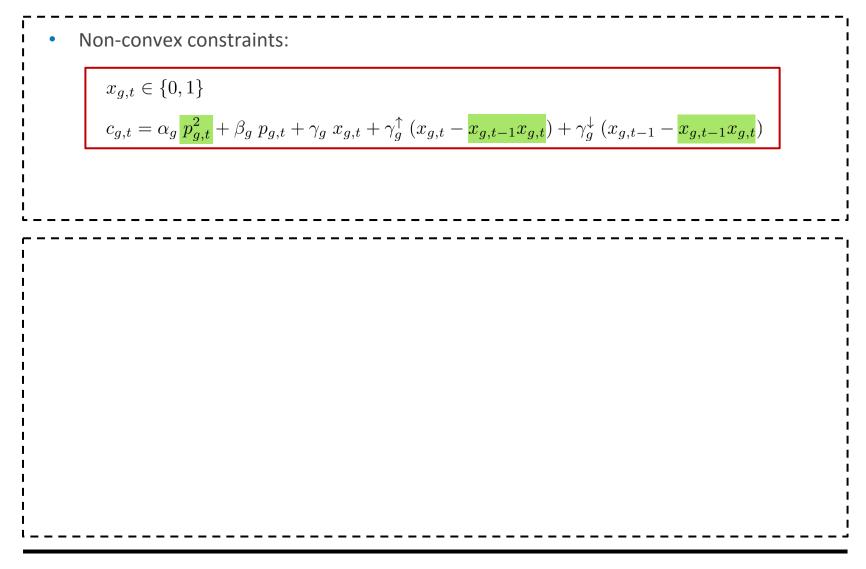
• Consider a problem with T time periods and $\,G$ units:



• A convex relaxation can be created by replacing \mathcal{U}_g and \mathcal{N}_t with their convex surrogates.

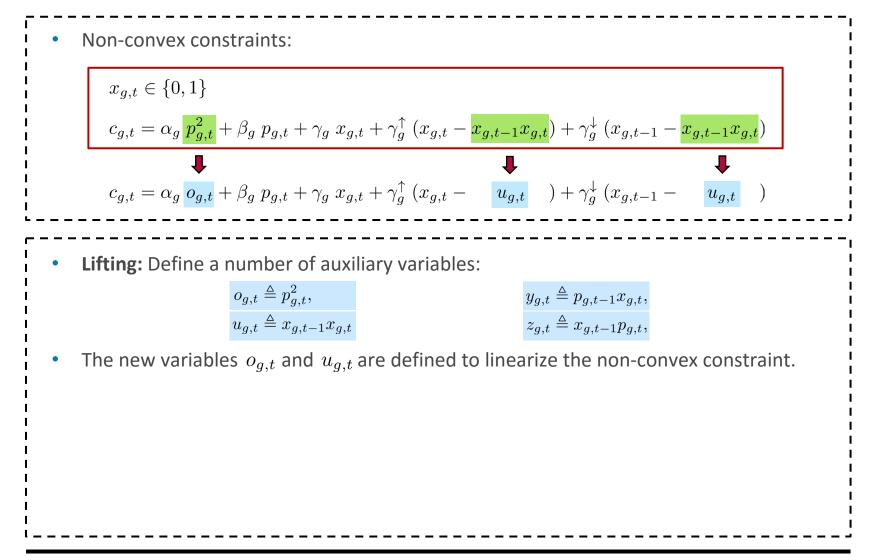


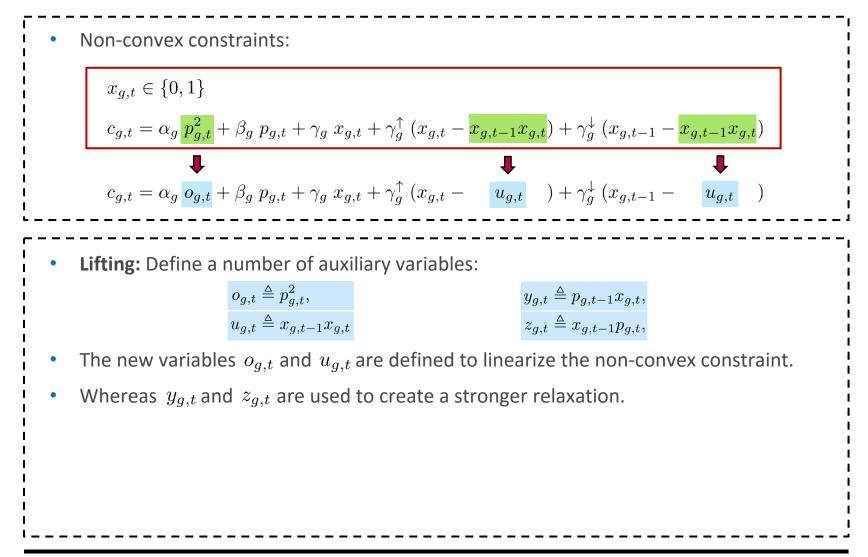
Non-convex constraints: $x_{g,t} \in \{0,1\}$ $c_{g,t} = \alpha_g \ p_{g,t}^2 + \beta_g \ p_{g,t} + \gamma_g \ x_{g,t} + \gamma_g^{\uparrow} \ (x_{g,t} - x_{g,t-1}x_{g,t}) + \gamma_g^{\downarrow} \ (x_{g,t-1} - x_{g,t-1}x_{g,t})$

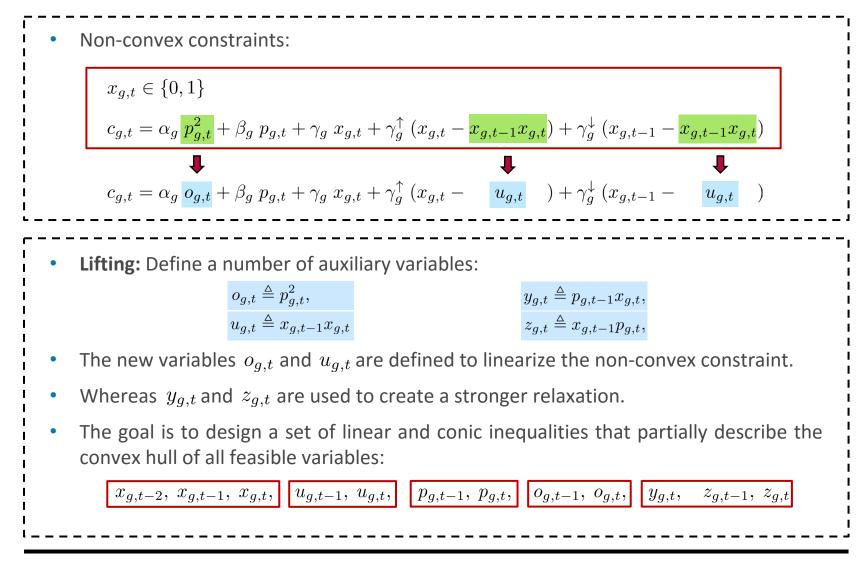


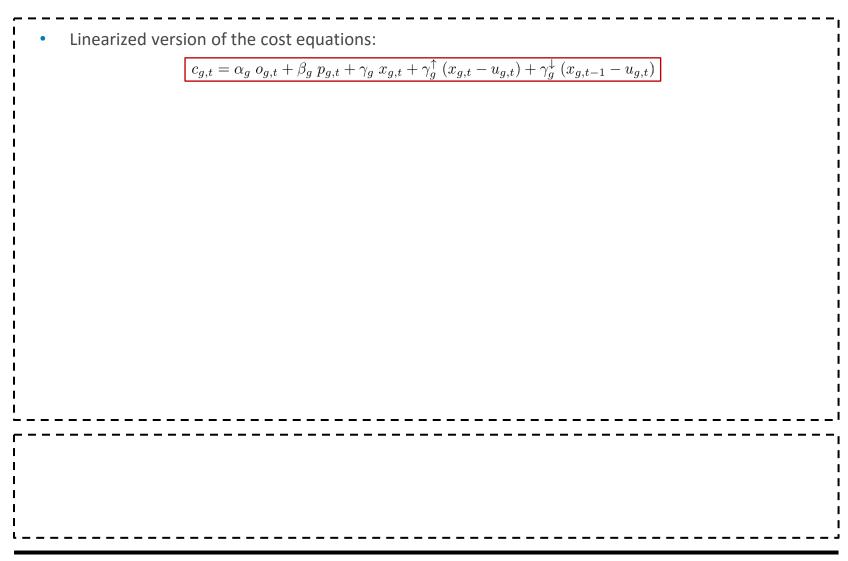
Non-convex constraints: $x_{g,t} \in \{0,1\}$ $c_{g,t} = \alpha_g \left[p_{g,t}^2 + \beta_g \ p_{g,t} + \gamma_g \ x_{g,t} + \gamma_g^{\uparrow} \ (x_{g,t} - x_{g,t-1}x_{g,t}) + \gamma_g^{\downarrow} \ (x_{g,t-1} - x_{g,t-1}x_{g,t}) \right]$ Lifting: Define a number of auxiliary variables: $o_{g,t} \triangleq p_{g,t}^2,$ $y_{q,t} \triangleq p_{q,t-1} x_{q,t},$ $z_{g,t} \triangleq x_{g,t-1} p_{g,t},$ $u_{q,t} \triangleq x_{q,t-1} x_{q,t}$

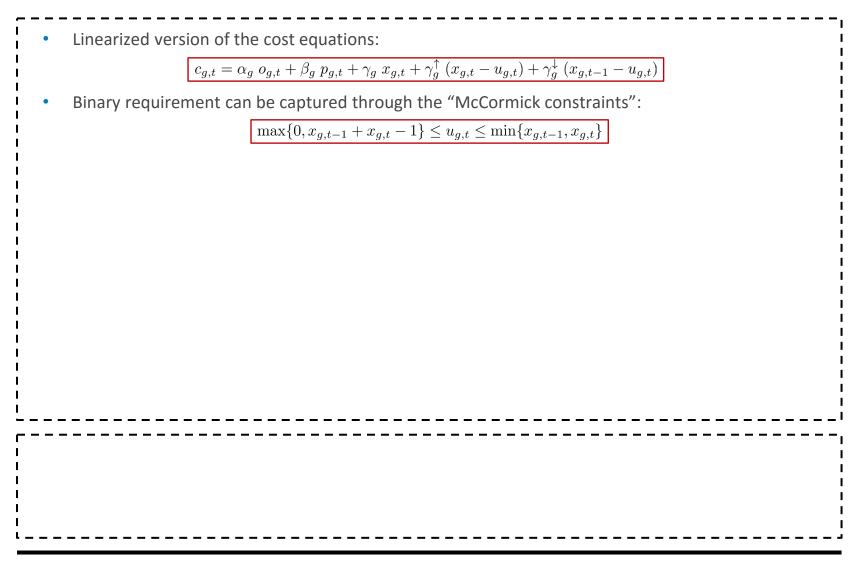
Non-convex constraints: $x_{g,t} \in \{0,1\}$ $c_{g,t} = \alpha_g p_{g,t}^2 + \beta_g p_{g,t} + \gamma_g x_{g,t} + \gamma_g^{\uparrow} (x_{g,t} - x_{g,t-1}x_{g,t}) + \gamma_g^{\downarrow} (x_{g,t-1} - x_{g,t-1}x_{g,t})$ Lifting: Define a number of auxiliary variables: $o_{g,t} \triangleq p_{g,t}^2,$ $\frac{o_{g,t} \triangleq p_{g,t}^2}{u_{g,t} \triangleq x_{g,t-1} x_{g,t}}$ $y_{q,t} \triangleq p_{q,t-1} x_{q,t},$ $z_{g,t} \triangleq x_{g,t-1} p_{g,t},$ The new variables $o_{g,t}$ and $u_{g,t}$ are defined to linearize the non-convex constraint.











Linearized version of the cost equations: $c_{g,t} = \alpha_g \ o_{g,t} + \beta_g \ p_{g,t} + \gamma_g \ x_{g,t} + \gamma_g^{\uparrow} \ (x_{g,t} - u_{g,t}) + \gamma_g^{\downarrow} \ (x_{g,t-1} - u_{g,t})$ Binary requirement can be captured through the "McCormick constraints": $\max\{0, x_{g,t-1} + x_{g,t} - 1\} \le u_{g,t} \le \min\{x_{g,t-1}, x_{g,t}\}$ 2 third-order Semidefinite (TSDP) inequalities: • $\begin{bmatrix} x_{g,t} & u_{g,t} & y_{g,t} \\ u_{g,t} & x_{g,t-1} & p_{g,t-1} \\ y_{g,t} & p_{g,t-1} & o_{g,t-1} \end{bmatrix} \succeq 0, \quad \begin{bmatrix} x_{g,t-1} & u_{g,t} & z_{g,t} \\ u_{g,t} & x_{g,t} & p_{g,t} \\ z_{g,t} & p_{g,t} & o_{g,t} \end{bmatrix} \succeq 0,$ $\forall (g,t) \in \mathcal{G} \times \mathcal{T}$

• Linearized version of the cost equations:

 $c_{g,t} = \alpha_g \ o_{g,t} + \beta_g \ p_{g,t} + \gamma_g \ x_{g,t} + \gamma_g^{\uparrow} \ (x_{g,t} - u_{g,t}) + \gamma_g^{\downarrow} \ (x_{g,t-1} - u_{g,t})$

• Binary requirement can be captured through the "McCormick constraints":

 $\max\{0, x_{g,t-1} + x_{g,t} - 1\} \le u_{g,t} \le \min\{x_{g,t-1}, x_{g,t}\}$

• 2 third-order Semidefinite (TSDP) inequalities:

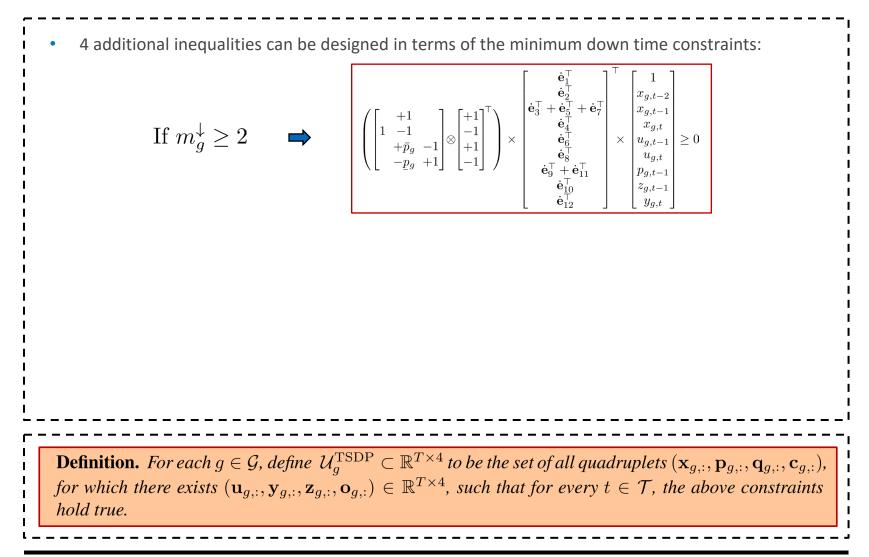
[3	$x_{g,t}$	$u_{g,t}$	$\begin{array}{c} y_{g,t} \\ p_{g,t-1} \\ o_{g,t-1} \end{array}$		$x_{g,t-1}$	$u_{g,t}$	$\begin{vmatrix} z_{g,t} \\ p_{g,t} \end{vmatrix} \succeq 0,$	
l	$u_{g,t}$	$x_{g,t-1}$	$p_{g,t-1}$	$\succeq 0,$	$u_{g,t}$	$x_{g,t}$	$p_{g,t} \succeq 0,$	$\forall (g,t) \in \mathcal{G} \times \mathcal{T}$
?	$y{g,t}$	$p_{g,t-1}$	$o_{g,t-1}$		$z_{g,t}$	$p_{g,t}$	$o_{g,t}$	

• 24 linear inequalities:

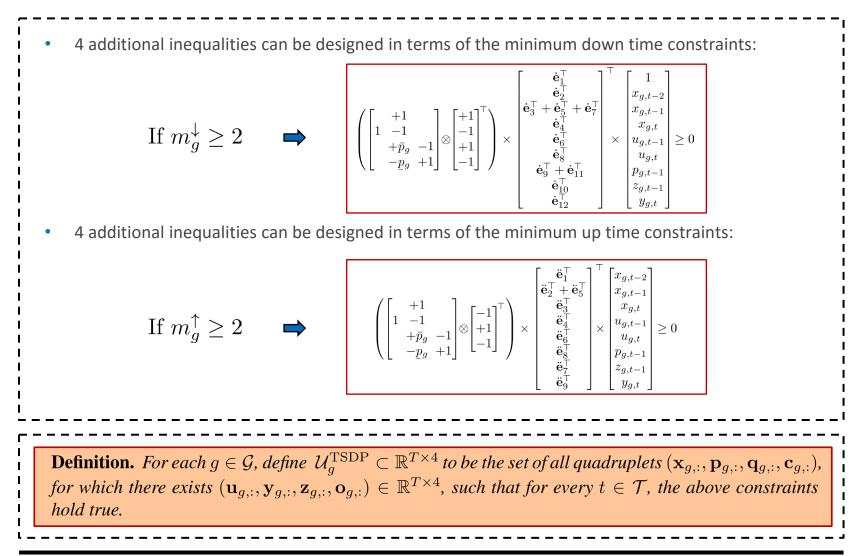
$$\left(\begin{pmatrix} +1 \\ 1 & -1 \\ 1 & -1 \\ 1 & -1 \end{pmatrix} \otimes \begin{bmatrix} -\underline{p}_g & +1 \\ +\bar{p}_g & -1 \\ & +\bar{p}_g & -1 \\ & & +\bar{p}_g & -1 \\ s_g & r_g - s_g & +1 & -1 \\ s_g & & r_g - s_g & -1 & +1 \end{bmatrix} \right) \times \begin{bmatrix} \mathbf{e}_1^\top \\ \mathbf{e}_2^\top + \mathbf{e}_6^\top + \mathbf{e}_7^\top \\ \mathbf{e}_3^\top + \mathbf{e}_{11}^\top + \mathbf{e}_{13}^\top \\ \mathbf{e}_7^\top + \mathbf{e}_{15}^\top \\ \mathbf{e}_7^\top + \mathbf{e}_{15}^\top \\ \mathbf{e}_8^\top + \mathbf{e}_{12}^\top \\ \mathbf{e}_{14}^\top \\ \mathbf{e}_{10}^\top \end{bmatrix} \times \begin{bmatrix} 1 \\ x_{g,t-1} \\ x_{g,t} \\ p_{g,t-1} \\ p_{g,t} \\ u_{g,t} \\ y_{g,t} \\ z_{g,t} \end{bmatrix} \ge 0, \qquad \forall (g,t) \in \mathcal{G} \times \mathcal{T}$$

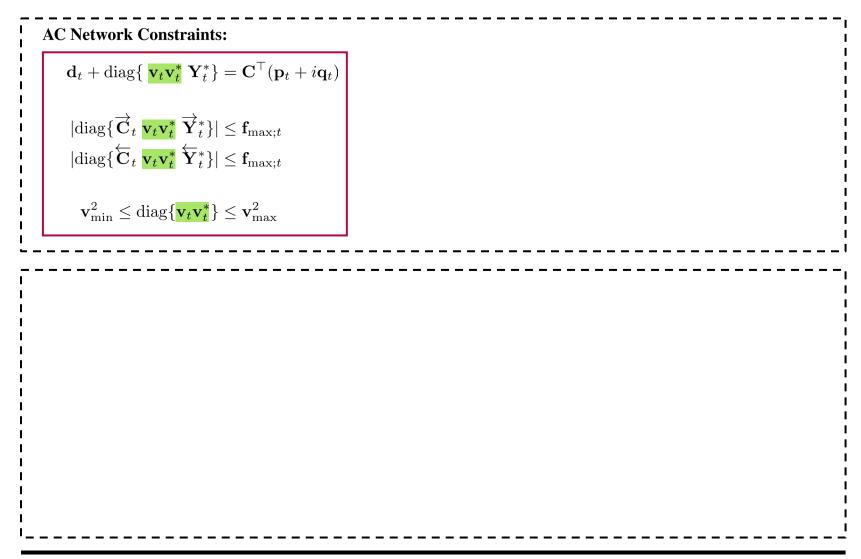
Linearized version of the cost equations: $c_{g,t} = \alpha_g \ o_{g,t} + \beta_g \ p_{g,t} + \gamma_g \ x_{g,t} + \gamma_q^{\uparrow} \ (x_{g,t} - u_{g,t}) + \gamma_q^{\downarrow} \ (x_{g,t-1} - u_{g,t})$ Binary requirement can be captured through the "McCormick constraints": $\max\{0, x_{g,t-1} + x_{g,t} - 1\} \le u_{g,t} \le \min\{x_{g,t-1}, x_{g,t}\}$ 2 third-order Semidefinite (TSDP) inequalities: $\begin{bmatrix} x_{g,t} & u_{g,t} & y_{g,t} \\ u_{g,t} & x_{g,t-1} & p_{g,t-1} \\ y_{g,t} & p_{g,t-1} & o_{g,t-1} \end{bmatrix} \succeq 0, \quad \begin{bmatrix} x_{g,t-1} & u_{g,t} & z_{g,t} \\ u_{g,t} & x_{g,t} & p_{g,t} \\ z_{g,t} & p_{g,t} & o_{g,t} \end{bmatrix} \succeq 0,$ $\forall (g,t) \in \mathcal{G} \times \mathcal{T}$ 24 linear inequalities: $\left(\begin{bmatrix} +1\\ +1\\ 1 & -1\\ 1 & -1\\ 1 & -1 \end{bmatrix} \otimes \begin{bmatrix} -\underline{p}_g & +1\\ +\bar{p}_g & -1\\ & -\underline{p}_g & +1\\ & +\bar{p}_g & -1\\ s_g & r_g - s_g & +1 & -1\\ s_g & r_g - s_g & +1 & -1\\ & & & & & \\ \end{array} \right) \times \begin{vmatrix} \mathbf{e}_2^\top + \mathbf{e}_0^\dagger & +\mathbf{e}_7^\top\\ \mathbf{e}_3^\top + \mathbf{e}_{11}^\top + \mathbf{e}_{13}^\top\\ \mathbf{e}_3^\top + \mathbf{e}_{12}^\top\\ \mathbf{e}_5^\top + \mathbf{e}_{12}^\top\\ \mathbf{e}_{14}^\top + \mathbf{e}_{12}^\top\\ \mathbf{e}_{14}^\top + \mathbf{e}_{12}^\top\\ \mathbf{e}_{14}^\top + \mathbf{e}_{12}^\top\\ \mathbf{g}_{g,t} \\ \mathbf{g}_{g,t} \\ \mathbf{g}_{g,t} \\ \mathbf{g}_{g,t} \end{vmatrix} \ge 0, \qquad \forall (g,t) \in \mathcal{G} \times \mathcal{T}$ **Definition.** For each $g \in \mathcal{G}$, define $\mathcal{U}_g^{\text{TSDP}} \subset \mathbb{R}^{T \times 4}$ to be the set of all quadruplets $(\mathbf{x}_{g,:}, \mathbf{p}_{g,:}, \mathbf{q}_{g,:}, \mathbf{c}_{g,:})$, for which there exists $(\mathbf{u}_{g,:}, \mathbf{y}_{g,:}, \mathbf{z}_{g,:}, \mathbf{o}_{g,:}) \in \mathbb{R}^{T \times 4}$, such that for every $t \in \mathcal{T}$, the above constraints hold true.

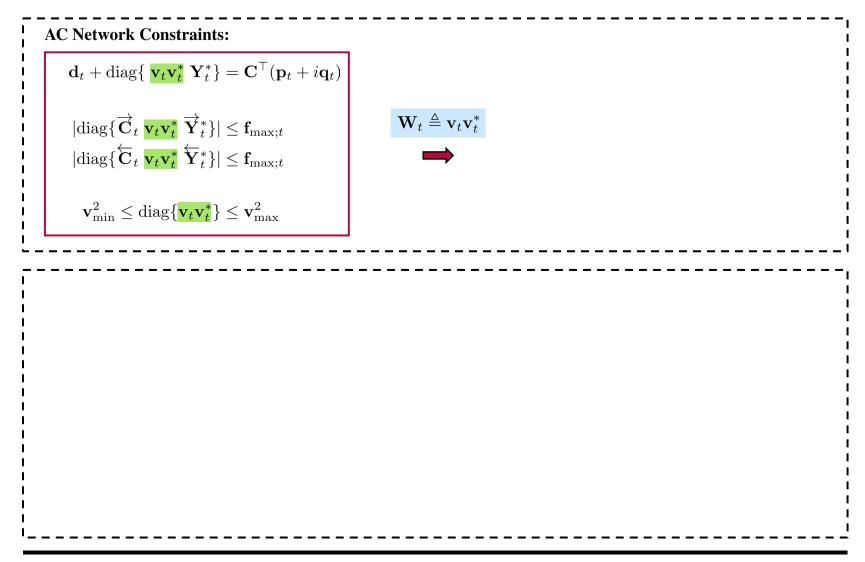
Linearized version of the cost equations: $c_{g,t} = \alpha_g \ o_{g,t} + \beta_g \ p_{g,t} + \gamma_g \ x_{g,t} + \gamma_q^{\uparrow} \ (x_{g,t} - u_{g,t}) + \gamma_q^{\downarrow} \ (x_{g,t-1} - u_{g,t})$ Binary requirement can be captured through the "McCormick constraints": $\max\{0, x_{g,t-1} + x_{g,t} - 1\} \le u_{g,t} \le \min\{x_{g,t-1}, x_{g,t}\}$ 2 third-order Semidefinite (TSDP) inequalities: $\begin{bmatrix} x_{g,t} & u_{g,t} & y_{g,t} \\ u_{g,t} & x_{g,t-1} & p_{g,t-1} \\ y_{g,t} & p_{g,t-1} & o_{g,t-1} \end{bmatrix} \succeq 0, \quad \begin{bmatrix} x_{g,t-1} & u_{g,t} & z_{g,t} \\ u_{g,t} & x_{g,t} & p_{g,t} \\ z_{g,t} & p_{g,t} & o_{g,t} \end{bmatrix} \succeq 0,$ $\forall (q,t) \in \mathcal{G} \times \mathcal{T}$ 24 linear inequalities: $\left(\begin{pmatrix} -1 & -p_{g} & +1 \\ -1 & +p_{g} & -1 \\ 1 & -1 \\ 1 & -1 \end{pmatrix} \otimes \begin{bmatrix} -p_{g} & +1 \\ +\bar{p}_{g} & -1 \\ -p_{g} & +1 \\ -\bar{p}_{g} & -1 \\ s_{g} & r_{g} - s_{g} & s_{g} - 1 \\ s_{g} & r_{g} - s_{g} & -1 \\ s_{g} & s_{g} - s_{g} & s_{g} \\ s_{g} & s_{g} - s_{g} \\ s_{g} & s_{g} - s_{g} \\ s_{g} & s$ **Definition.** For each $g \in \mathcal{G}$, define $\mathcal{U}_g^{\text{TSDP}} \subset \mathbb{R}^{T \times 4}$ to be the set of all quadruplets $(\mathbf{x}_{g,:}, \mathbf{p}_{g,:}, \mathbf{q}_{g,:}, \mathbf{c}_{g,:})$, for which there exists $(\mathbf{u}_{g,:}, \mathbf{y}_{g,:}, \mathbf{z}_{g,:}, \mathbf{o}_{g,:}) \in \mathbb{R}^{T \times 4}$, such that for every $t \in \mathcal{T}$, the above constraints hold true.



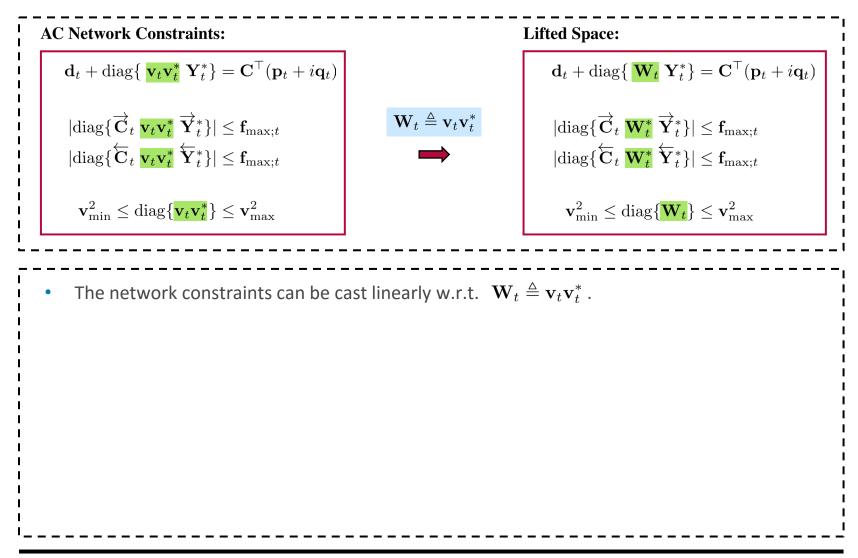
Relaxation of Unit Constraints

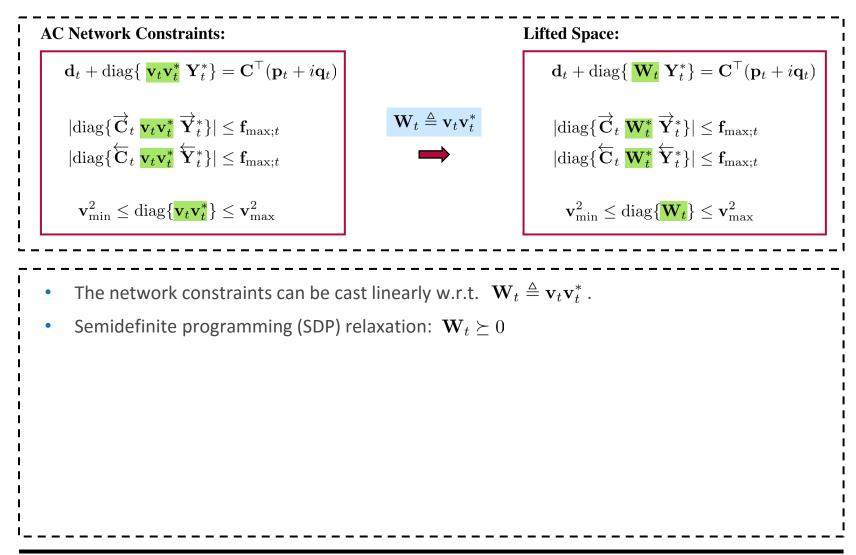


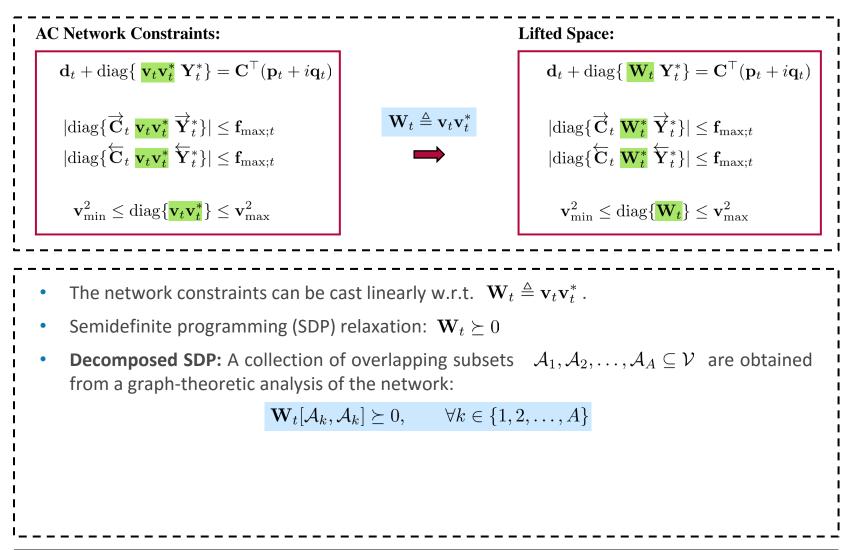


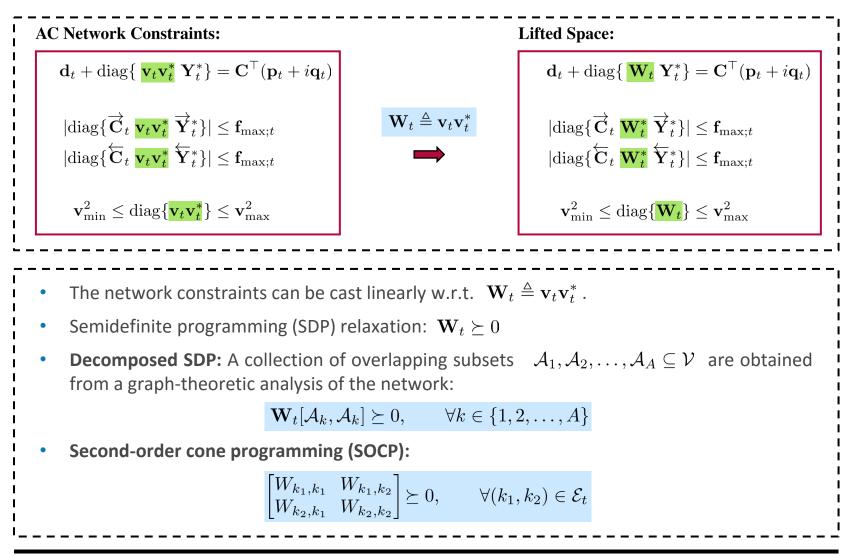


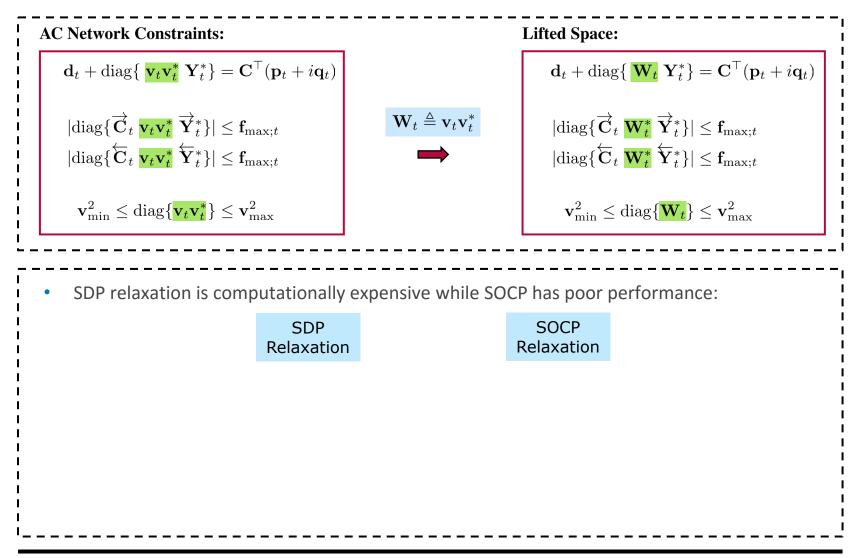


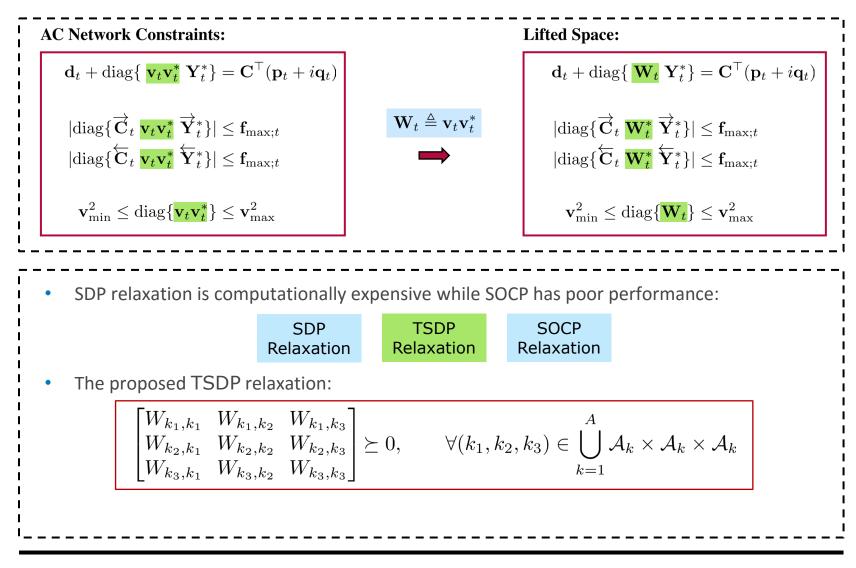


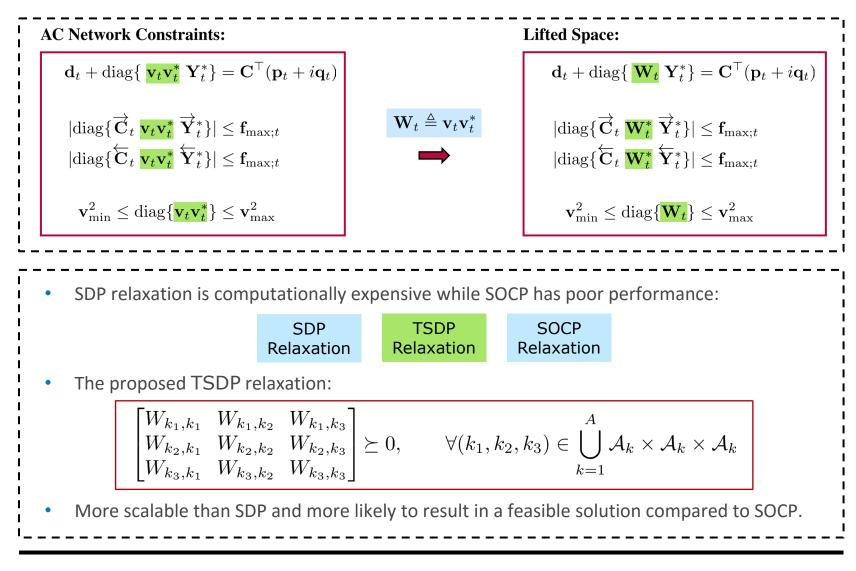




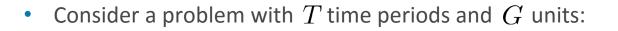








Convex Relaxation



 $\begin{array}{l} \underset{\mathbf{x},\mathbf{p},\mathbf{q},\mathbf{c}\in\mathbb{R}^{G\times T}}{\text{minimize}} \\ \end{array}$

subject to

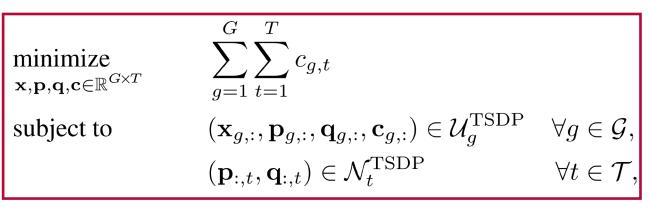
G T	
$\sum \sum c_{g,t}$	
$g{=}1 t{=}1$	
$(\mathbf{x}_{g,:},\mathbf{p}_{g,:},\mathbf{q}_{g,:},\mathbf{c}_{g,:})\in\mathcal{U}_{g}$	$\forall g \in \mathcal{G},$
$(\mathbf{p}_{:,t},\mathbf{q}_{:,t})\in\mathcal{N}_t$	$\forall t \in \mathcal{T},$

Convex Relaxation

• Consider a problem with T time periods and G units:

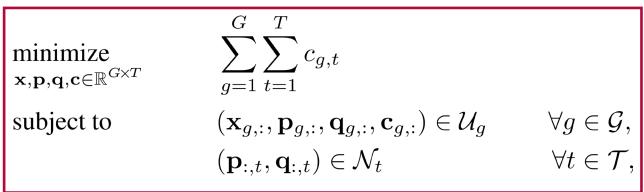
 $\begin{array}{ll} \underset{\mathbf{x},\mathbf{p},\mathbf{q},\mathbf{c}\in\mathbb{R}^{G\times T}}{\text{minimize}} & \sum_{g=1}^{G}\sum_{t=1}^{T}c_{g,t} \\ \text{subject to} & (\mathbf{x}_{g,:},\mathbf{p}_{g,:},\mathbf{q}_{g,:},\mathbf{c}_{g,:})\in\mathcal{U}_{g} & \forall g\in\mathcal{G}, \\ & (\mathbf{p}_{:,t},\mathbf{q}_{:,t})\in\mathcal{N}_{t} & \forall t\in\mathcal{T}, \end{array}$

• Third-order semidefinite relaxation:

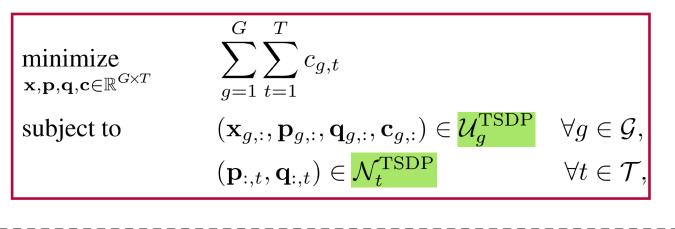


Convex Relaxation

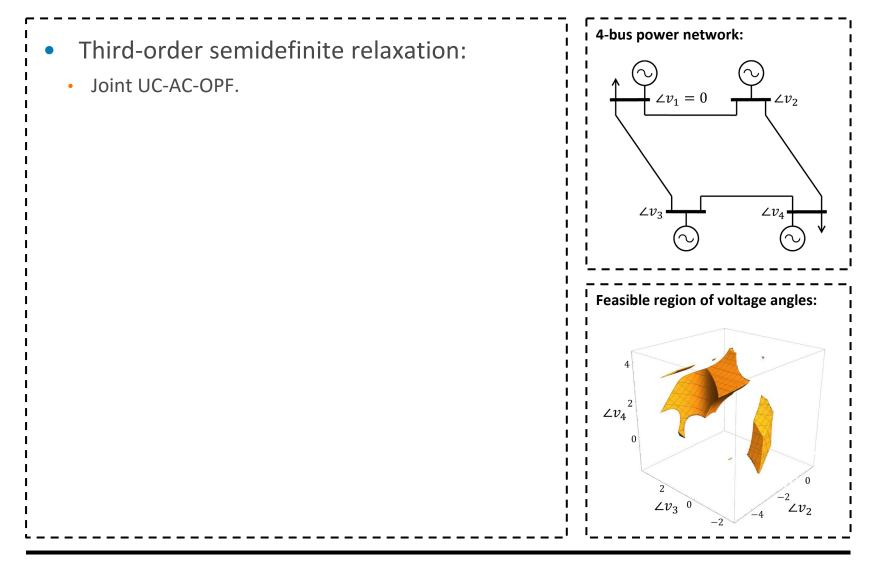
• Consider a problem with T time periods and G units:



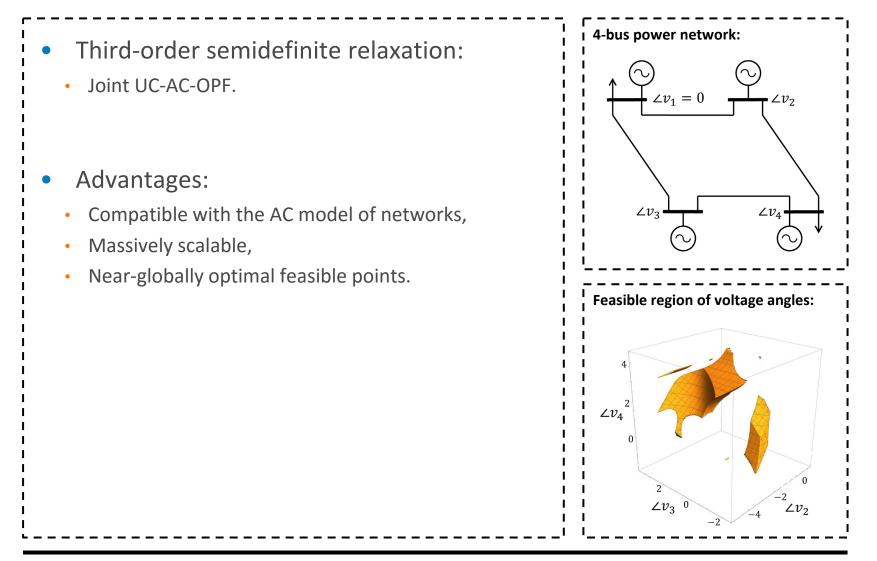
• Third-order semidefinite relaxation:



Conclusions

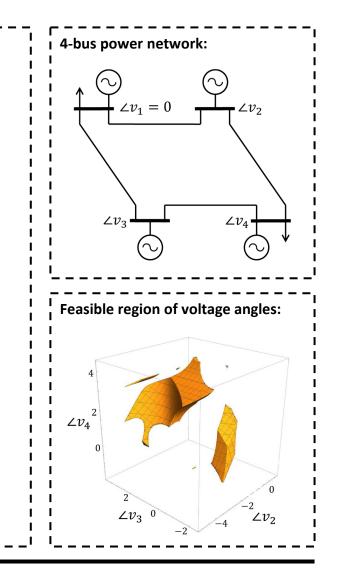


Conclusions



Conclusions

- Third-order semidefinite relaxation:
 - Joint UC-AC-OPF.
 - Advantages:
 - Compatible with the AC model of networks,
 - Massively scalable,
 - Near-globally optimal feasible points.
- Future directions:
 - Incorporation of uncertainties and security consideration,
 - Implementation on GPU: Linear algebra on 3 x 3 matrices has closed-form solutions.



Thank you