

Scheduling of Commitment, Energy and Reserves Under Uncertainty in a Two-Settlement Framework

Ray Zimmerman¹, Alberto Lamadrid², Daniel Muñoz-Álvarez¹, Carlos Murillo-Sánchez³, Robert J. Thomas¹

¹Cornell University (Ithaca, NY)

²Lehigh University (Bethlehem, PA)

³National University of Colombia (Manizales, Caldas, Colombia)

FERC Technical Conference on Increasing Market and Planning Efficiency through Improved Software

June 22-24, 2015

Acknowledgements

- Alberto Lamadrid
- Daniel Muñoz-Álvarez
- Carlos Murillo-Sánchez

- Bob Thomas
- C. Lindsay Anderson
- Wooyoung Jeon
- Tim Mount

Outline

- Generalized scheduling problem
- MOPS MATPOWER Optimal Power Scheduler
- Our approach
- Benchmarking stochastic vs. deterministic
- Simulation Results
- Challenges

Problem Characteristics

Many problems we would like to solve in electricity markets, operations and planning are:

- large-scale
- stochastic
- non-linear
- mixed-integer
- multi-stage
- multi-period

Our Formulation

- Generalized extension of combined UC/OPF problem, to include ...
 - intertemporal energy constraints for storage, flexible/ deferrable demand
 - endogenous, price responsive contingency and ramping reserves
 - multi-stage stochastic approach w/scenario recombination
- Presented here in 2013 and published in [1].

[1] Carlos E. Murillo-Sánchez, Ray D. Zimmerman, C. Lindsay Anderson and Robert J. Thomas, "Secure Planning and Operations of Systems with Stochastic Sources, Energy Storage and Active Demand", *Smart Grid, IEEE Transactions on*, vol.4, no.4, pp.2220-2229, Dec. 2013. Available: http://dx.doi.org/10.1109/TSG.2013.2281001

Outline

- Generalized scheduling problem
- MOPS MATPOWER Optimal Power Scheduler
- Our approach
- Benchmarking stochastic vs. deterministic
- Simulation Results
- Challenges

MOPS

- Matpower Optimal Power Scheduler
 - Current implementation based on DC power flow model.
 - Being refined and integrated into next major
 MATPOWER release.
 - AC version still at early prototype stage.

economic dispatch

MATPOWER

continuous dispatch single period

Objective Function

$$\min_{x} f(x)$$
 where

- (1) expected active power dispatch and re-dispatch costs
- (2) contingency reserve costs
- (3) expected ramping wear & tear costs

$$f(x) = f_p(p, p_+, p_-) + f_r(r_+, r_-) + f_\delta(p)$$

+ $f_{lf}(\delta_+, \delta_-) + f_s(p_{sc}, p_{sd}) + f_{uc}(v, w)$

- (4) load following ramp reserve costs
- (5) expected cost/value of leftover stored energy in terminal states
- (6) startup and shutdown costs

Constraints

- (1) standard OPF constraints
 - nonlinear AC power balance equations
 - nonlinear transmission flow and voltage limits, other OPF inequalities
- (2) contingency constraints
 - reserve, redispatch and contract variables
 - ramping limits on transitions from base to contingency cases
- (3) intertemporal constraints
 - load following ramping limits and reserves
 - energy storage constraints
- (4) unit commitment constraints
 - injection limits vs. commitment variables
 - startup/shutdown events
 - minimum up/down times

Uncertainty

Begin with single period problem, that is, making the OPF stochastic and secure.

- two types of uncertainty
 - wind, load (continuous, distribution)
 - contingencies (discrete, low probability)
- both handled by selecting sets of individual probability weighted scenarios, so that:
 - overall stochastic cost is approximated adequately,
 - credible, low probability, high impact events are included to ensure security,
 - number of scenarios is minimized to keep computational cost reasonable.

Problem Structure – Contingencies

- base power flow scenario
- contingency state power flow
- energy contract, incs/decs, reserves
 - transition constraint (e.g. ramp limit)

Problem Structure – Wind

- base power flow scenario
- contingency state power flow
 - energy contract, incs/decs, reserves
 - transition constraint (e.g. ramp limit)

Reserves

Extending to Multiple Periods

- number of possible states explodes due to path dependence
- treating each trajectory as a scenario requires too many trajectories to capture the range of possible outcomes in each period
- our approach enforce feasibility of a central path, the high probability path defined by the set of base scenarios

Ramping

Ramping – Load Following Reserve

Storage

Storage

47

Outline

- Generalized scheduling problem
- MOPS MATPOWER Optimal Power Scheduler
- Our approach
- Benchmarking stochastic vs. deterministic
- Simulation Results
- Challenges

Application Context

 In system operations, we have multi-stage decisions (focus on day-ahead commitments through 5-minute dispatch), with uncertainty revelation along the way.

The Challenge – Testing MOPS

Stochastic

Secure UC+OPF

- multiple scenarios for demand and renewable availability
- explicit contingencies for security

DeterministicUC+OPF

- single scenario with expected demand and renewable availability
- zonal reserve requirements for security

Ideal Comparison

- Our stochastic approach in a receding horizon context vs. current ISO practice with realistic forecasting of uncertain inputs (time varying distributions).
 - Under uncertainty, allowing recourse in decisionmaking can dramatically improve efficiency
 - Tests should reflect potential real-world benefits
- Both are too complex
- Data problem is massive

Tradeoffs

Two settlement structure

- 1st settlement : solves a multi-period plan resulting in dayahead commitment decisions and reserve allocations
- 2nd settlement: solves single-period problem to determine energy dispatch and contingency reserve allocation subject to UC decisions from 1st settlement, dispatch from previous period 2nd settlement and newly revealed uncertainty
- Ideally, should have 3rd phase to simulate "what actually happens" but for now we assume 2nd settlement approximates that well enough

Distinctive Features of Our Approach

MOPS formulation

- design does not preclude AC network model
- multi-stage scenario tree w/scenario recombo vs.
 individual trajectories as scenarios
 - smaller number of scenarios required to capture range of outcomes
 - preserves non-anticipativity of dispatch decisions
- scenarios linked by reserves, ramping, storage as well as unit commitment

Benchmarking structure

 2nd settlement decisions are sequential (causal) as in real world

Outline

- Generalized scheduling problem
- MOPS MATPOWER Optimal Power Scheduler
- Our approach
- Benchmarking stochastic vs. deterministic
- Simulation Results
- Challenges

Testing Structure

• Given:

- historical temp, wind, demand up to today (any selected day of interest)
- ARIMA model of temp, wind, demand that can generate potential realizations of the operating day

For each approach:

- Solve 1st settlement problem for the day (based on uncertainty predicted by the ARIMA model).
- Select N realizations of the day generated by ARIMA model, for each solve 2nd settlement problems sequentially for each hour, subject to 1st settlement.

First Settlement

Stochastic

- n_j base wind/load scenarios per period
- n_c contingencies for each base scenario
- base scenarios selected based on ARIMA model
- n_j x n_c x 24 OPF problems tied together by ramping, UC and additional variables, costs, constraints

Deterministic

- based on single expected wind/load scenario per period
- zonal reserve requirements to handle largest outage + forecast errors, no explicit contingencies
- base scenario based on ARIMA model
- 24 OPF problems tied together by ramping and UC

Second Settlement

Stochastic

- 1 base scenario with realized wind/load
- *n_c* contingencies
- UC from 1st settlement
- dispatch constrained by ramp from previous period
- n_c OPF problems tied together by additional variables, costs, constraints

Deterministic

- 1 base scenario with realized wind/load
- zonal reserve requirements to handle largest outage, no explicit contingencies
- UC from 1st settlement
- dispatch constrained by ramp from previous period
- single OPF problem

Outline

- Generalized scheduling problem
- MOPS MATPOWER Optimal Power Scheduler
- Our approach
- Benchmarking stochastic vs. deterministic
- Simulation Results
- Challenges

118-bus Test System

DC Network Example

number of	
buses	118
conventional generators	42
wind farms	12
grid-level storage units	0
curtailable loads	99
periods in horizon, $ T $	24
scenarios per period, $ J^t $	5
contingencies per scenario, $ K^{tj} - 1$	7
variables in resulting MIQP	582,990
constraints in resulting MIQP	1,536,006

Unit Commitment - Stochastic

Unit Commitment - Deterministic

Unit Commitment - Both

Period

Stochastic
Deterministic
Both

Expected Cost Comparison

	Stochastic	Deterministic	Difference
fuel	\$1,386,000	\$1,564,000	9%
no load	\$449,000	\$440,000	0%
UC	\$5,000	\$9,000	0%
DA Reserve	\$17,000	\$51,000	2%
RT Reserve	\$8,000	\$45,000	2%
LNS	\$66,000	\$650,000	30%
Total	\$1,931,000	\$2,760,000	43%

Outline

- Generalized scheduling problem
- MOPS MATPOWER Optimal Power Scheduler
- Our approach
- Benchmarking stochastic vs. deterministic
- Simulation Results
- Challenges

Challenges

- Began with the idea that 1st settlement contracts for commitment, energy, reserves and ramping would provide "look-ahead view" for single-period 2nd settlement problem
 - too restrictive
 - resulted in shedding load when unused (just not contracted) capacity was available
 - consequence of simplified uncertainty model

Challenges

- Ideally, 2nd settlement would also be multiperiod, look-ahead with finer time step
 - not what has typically been done
 - data requirements are quite high
- Is there a way to incorporate "look-ahead" information from the solution of a multiperiod problem to guide a subsequent single period recourse problem without being unnecessarily restrictive?

Questions?