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Problem Characteristics

Many problems we would like to solve in
electricity markets, operations and planning
dare:

— large-scale

— stochastic

— nhon-linear

— mixed-integer
— multi-stage

— multi-period



Our Formulation

* Generalized extension of combined UC/OPF
problem, to include ...

— intertemporal energy constraints for storage, flexible/
deferrable demand

— endogenous, price responsive contingency and ramping
reserves

— multi-stage stochastic approach w/scenario recombination

* Presented here in 2013 and published in [1].

[1] Carlos E. Murillo-Sanchez, Ray D. Zimmerman, C. Lindsay Anderson and Robert J. Thomas,
“Secure Planning and Operations of Systems with Stochastic Sources, Energy Storage and Active
Demand”, Smart Grid, IEEE Transactions on, vol.4, no.4, pp.2220-2229, Dec. 2013. Available:
http://dx.doi.org/10.1109/T5G.2013.2281001
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MOPS

* MATPOWER Optimal Power Scheduler

— Current implementation based on DC power flow
model.

— Being refined and integrated into next major
MATPOWER release.

— AC version still at early prototype stage.
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f(z)

Objective Function

min f(x) where
xr
(1) expected active power (2) contingency (3) expected ramping
dispatch and reserve wear & tear
re-dispatch costs costs costs

= fp(p,p+,p—) + fr(re,r=) + f5(p)

‘|‘f1f(5—|—7 )"‘fs(pSCapsd)‘l‘fUC(v w)

(4) load following (5) expected cost/value (6) startup and
ramp reserve of leftover stored shutdown
costs energy in terminal costs

states



Constraints

(1) standard OPF constraints
* nonlinear AC power balance equations
e nonlinear transmission flow and voltage
limits, other OPF inequalities

(2) contingency constraints
* reserve, redispatch and contract variables
* ramping limits on transitions from base to
contingency cases

(3) intertemporal constraints
* Jload following ramping limits and reserves
* energy storage constraints

(4) unit commitment constraints
* injection limits vs. commitment variables
» startup/shutdown events
* minimum up/down times



Uncertainty

Begin with single period problem, that is, making the
OPF stochastic and secure.

* two types of uncertainty

— wind, load (continuous, distribution)
— contingencies (discrete, low probability)

* both handled by selecting sets of individual
probability weighted scenarios, so that:

— overall stochastic cost is approximated adequately,

— credible, low probability, high impact events are included to ensure
security,

— number of scenarios is minimized to keep computational cost
reasonable.



Problem Structure — Contingencies

=

__________

base power flow scenario
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transition constraint (e.g. ramp limit)



Problem Structure — Wind

__________

base power flow scenario

contingency state power flow

energy contract, incs/decs, reserves

transition constraint (e.g. ramp limit)



Reserves

MW injections

A
tell | T g T
e ® -\ SR ITIITLITITILILIELE
physical
ramp up upward
tij2 11 limit reserve
p 4 ptl i - ,
+ 7 t1
Al T
t110
P ti10 2 Ptiﬂ
7
aol T S \_ 0 Pe
1] _
P ti12 ? @
p_ A
t112 — . te
P . : 2 tigl r_
' physical p— downward
ramp down
- reserve
tij1 limit
T O RRAET Q-
(L,O)  (1,1)  (1,2) (7,00 (1) (4;2) (scenarios,
R/ \/ contingencies)
; " (4, k)
scenario 1 scenario J

42



Extending to Multiple Periods

* number of possible states explodes due to
path dependence

* treating each trajectory as a scenario requires
too many trajectories to capture the range of
possible outcomes in each period

e our approach — enforce feasibility of a central
path, the high probability path defined by the
set of base scenarios



Ramping
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Ramping — Load Following Reserve

MW injections
A

] central “high-probability” path
[_] load following ramp up capacity

B load following ramp down capacity

t t+1 t—||—2 t+3 t—lk4 time
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Stored Energy MWh
A

Storage

t_|l_4 time
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Application Context

* |n system operations, we have multi-stage
decisions (focus on day-ahead commitments
through 5-minute dispatch), with uncertainty

revelation along the way.



The Challenge — Testing MOPS

Stochastic Deterministic
Secure UC+OPF UC+OPF
 multiple scenarios for * single scenario with
demand and renewable expected demand and
availability renewable availability
* explicit contingencies for e zonal reserve requirements

security for security



ldeal Comparison

e Our stochastic approach in a receding horizon
context vs. current ISO practice with realistic
forecasting of uncertain inputs (time varying
distributions).

— Under uncertainty, allowing recourse in decision-
making can dramatically improve efficiency

— Tests should reflect potential real-world benefits

* Both are too complex
* Data problem is massive



Tradeoffs

e Two settlement structure

— 15t settlement : solves a multi-period plan resulting in day-
ahead commitment decisions and reserve allocations

— 2"d settlement : solves single-period problem to determine
energy dispatch and contingency reserve allocation
subject to UC decisions from 15t settlement, dispatch from

previous period 2"d settlement and newly revealed
uncertainty

— |ldeally, should have 3™ phase to simulate “what actually
happens” but for now we assume 2" settlement
approximates that well enough



Distinctive Features of Our Approach

 MOPS formulation
— design does not preclude AC network model

— multi-stage scenario tree w/scenario recombo vs.
individual trajectories as scenarios

* smaller number of scenarios required to capture range of
outcomes

* preserves non-anticipativity of dispatch decisions
— scenarios linked by reserves, ramping, storage as well as
unit commitment
* Benchmarking structure

— 2" settlement decisions are sequential (causal) as in real
world



Outline

Generalized scheduling problem
MOPS — MATPOWER Optimal Power Scheduler
Our approach

Simulation Results
Challenges



Testing Structure

* Given:
— historical temp, wind, demand up to today (any selected
day of interest)
— ARIMA model of temp, wind, demand that can generate
potential realizations of the operating day
* For each approach:

1. Solve 15t settlement problem for the day (based on
uncertainty predicted by the ARIMA model).

2. Select N realizations of the day generated by ARIMA
model, for each solve 2"d settlement problems
sequentially for each hour, subject to 15 settlement.



First Settlement

Stochastic Deterministic

* n; base wind/load scenarios ¢ based on single expected
per period wind/load scenario per

* n_contingencies for each period
base scenario * zonal reserve requirements
based on ARIMA model forecast errors, no explicit

* n,xn.x24 OPF problems contingencies

tied together by ramping, * base scenario based on
UC and additional variables, ARIMA model
costs, constraints * 24 OPF problems tied

together by ramping and UC



Second Settlement

Stochastic

1 base scenario with
realized wind/load

n.contingencies
UC from 15t settlement

dispatch constrained by
ramp from previous period

n. OPF problems tied
together by additional
variables, costs, constraints

Deterministic

1 base scenario with
realized wind/load

zonal reserve requirements
to handle largest outage, no
explicit contingencies

UC from 15t settlement

dispatch constrained by
ramp from previous period

single OPF problem
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DC Network Example

number of . -

buses

conventional generators

wind farms

grid-level storage units

curtailable loads

periods in horizon, | T|

scenarios per period, |J|
contingencies per scenario, |KY| —1
variables in resulting MIQP

constraints in resulting MIQP

118

42

12

0

99

24

5

7

582,990
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Unit Commitment - Stochastic

e e ems e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Period

Gen 1 @ Bus 6, ng

Gen 2 @ Bus 8, coal
Gen 4 @ Bus 12, coal
Gen 5 @ Bus 24, coal
Gen 6 @ Bus 25, coal
Gen 7 @ Bus 26, coal
Gen 8 @ Bus 27, coal
Gen 9 @ Bus 40, coal
Gen 10 @ Bus 42, coal
Gen 11 @ Bus 46, coal
Gen 12 @ Bus 49, coal
Gen 13 @ Bus 49, coal
Gen 14 @ Bus 54, ng
Gen 15 @ Bus 59, ngcc
Gen 16 @ Bus 61, ngcc
Gen 17 @ Bus 62, ngcc
Gen 18 @ Bus 65, ng
Gen 19 @ Bus 65, ng
Gen 20 @ Bus 66, ng
Gen 21 @ Bus 66, ng
Gen 22 @ Bus 69, ng
Gen 23 @ Bus 69, ng
Gen 24 @ Bus 72, coal
Gen 25 @ Bus 73, coal
Gen 26 @ Bus 76, ng
Gen 27 @ Bus 77, ng
Gen 28 @ Bus 80, coal
Gen 29 @ Bus 87, coal
Gen 30 @ Bus 89, ng
Gen 31 @ Bus 89, ng
Gen 32 @ Bus 90, coal
Gen 33 @ Bus 91, coal
Gen 35 @ Bus 100, coal
Gen 40 @ Bus 111, coal
Gen 41 @ Bus 113, coal
Gen 42 @ Bus 116, coal



Unit Commitment - Deterministic

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Period

Gen 1 @ Bus 6, ng

Gen 2 @ Bus 8, coal
Gen 4 @ Bus 12, coal
Gen 5 @ Bus 24, coal
Gen 6 @ Bus 25, coal
Gen 7 @ Bus 26, coal
Gen 8 @ Bus 27, coal
Gen 9 @ Bus 40, coal
Gen 10 @ Bus 42, coal
Gen 11 @ Bus 46, coal
Gen 12 @ Bus 49, coal
Gen 13 @ Bus 49, coal
Gen 14 @ Bus 54, ng
Gen 15 @ Bus 59, ngcc
Gen 16 @ Bus 61, ngcc
Gen 17 @ Bus 62, ngcc
Gen 18 @ Bus 65, ng
Gen 19 @ Bus 65, ng
Gen 20 @ Bus 66, ng
Gen 21 @ Bus 66, ng
Gen 22 @ Bus 69, ng
Gen 23 @ Bus 69, ng
Gen 24 @ Bus 72, coal
Gen 25 @ Bus 73, coal
Gen 26 @ Bus 76, ng
Gen 27 @ Bus 77, ng
Gen 28 @ Bus 80, coal
Gen 29 @ Bus 87, coal
Gen 30 @ Bus 89, ng
Gen 31 @ Bus 89, ng
Gen 32 @ Bus 90, coal
Gen 33 @ Bus 91, coal
Gen 35 @ Bus 100, coal
Gen 40 @ Bus 111, coal
Gen 41 @ Bus 113, coal
Gen 42 @ Bus 116, coal



Unit Commitment - Both

1

2 3 4 5

6

7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Period

Gen 1 @ Bus 6, ng

Gen 2 @ Bus 8, coal
Gen 4 @ Bus 12, coal
Gen 5 @ Bus 24, coal
Gen 6 @ Bus 25, coal
Gen 7 @ Bus 26, coal
Gen 8 @ Bus 27, coal
Gen 9 @ Bus 40, coal
Gen 10 @ Bus 42, coal
Gen 11 @ Bus 46, coal
Gen 12 @ Bus 49, coal
Gen 13 @ Bus 49, coal
Gen 14 @ Bus 54, ng
Gen 15 @ Bus 59, ngcc
Gen 16 @ Bus 61, ngcc
Gen 17 @ Bus 62, ngcc
Gen 18 @ Bus 65, ng
Gen 19 @ Bus 65, ng
Gen 20 @ Bus 66, ng
Gen 21 @ Bus 66, ng
Gen 22 @ Bus 69, ng
Gen 23 @ Bus 69, ng
Gen 24 @ Bus 72, coal
Gen 25 @ Bus 73, coal
Gen 26 @ Bus 76, ng
Gen 27 @ Bus 77, ng
Gen 28 @ Bus 80, coal
Gen 29 @ Bus 87, coal
Gen 30 @ Bus 89, ng
Gen 31 @ Bus 89, ng
Gen 32 @ Bus 90, coal
Gen 33 @ Bus 91, coal
Gen 35 @ Bus 100, coal
Gen 40 @ Bus 111, coal
Gen 41 @ Bus 113, coal
Gen 42 @ Bus 116, coal

I Stochastic
[ Deterministic
I Both
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Expected Costs ($)
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I Fuel
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Expected Cost Comparison

fuel $1,386,000 $1,564,000 9%
no load S449,000 $440,000 0%
UcC $5,000 $9,000 0%
DA Reserve $17,000 $51,000 2%
RT Reserve S8,000 S45,000 2%
LNS $66,000 $650,000 30%

Total $1,931,000 $2,760,000 43%

66
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Challenges

 Began with the idea that 15 settlement
contracts for commitment, energy, reserves
and ramping would provide “look-ahead view’
for single-period 2" settlement problem

— too restrictive

— resulted in shedding load when unused (just not
contracted) capacity was available

— consequence of simplified uncertainty model

/]



Challenges

* |deally, 2" settlement would also be multi-
period, look-ahead with finer time step

— not what has typically been done

— data requirements are quite high

* |s there a way to incorporate “look-ahead”
information from the solution of a multi-
period problem to guide a subsequent single
period recourse problem without being
unnecessarily restrictive?



Questions?



