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Wind Integration Status

I Wind penetration in U.S.: 1.5%
(2008)→ 4.5% (2013) · · · → 20%
(2030)

I Wind integration costs

I Non-dispatchable

I Have to improve wind
dispatchability through better
scheduling !

Wind Integration Cost (Source: EERE 2013)
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Wind Dispatchability

I Traditionally a non-dispatchable resource

I Curtailment occurs due to congestions or security reasons
I Curtailment is implemented in an ex post fashion, endangering system reliability

I Proactive approaches to improve wind dispatchability

I Dispatchable Intermittent Resource (DIR) protocol (MISO)

I Do-Not-Exceed (DNE) Limits (ISO New England)
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A Variable Resource Dispatch Framework – DNE Limits

I Proposed by ISO New England [Zhao, Zheng, and Litvnov (2015)]

I DNE procedure

1 Determine the dispatch base point based on hours-ahead wind forecasting
2 Calculate the maximal ranges of power output for each wind farm, based on

security analysis with reserve levels given by the dispatch base point
3 Wind farms follow these ranges as a dispatch guidance

I Benefits

I A dispatch framework for variable resources
I DNE limits are simple for execution
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DNE Limits Selection
I Allocation of dispatch ranges in the dispatchable regions

I Maximize the weighted circumference of the box

I LMPs are used to weight the ranges [Zhao, Zheng, and Litvnov, 15’]

I A market perspective:
∑

i∈N LMPi × (ui − li)

I Which wind farm should get larger limits? what other criteria for range determination?
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Discrepancy Between Forecast and Dispatch

I Actual wind power dispatched could deviate from base point because of

I Point forecast
I Forecasting errors
I Forecasting bias
I Curtailments due to congestions or security reasons

I Deviations maybe correlated

Source: NREL
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DNE Limits Under Uncertainties

I Original DNE limits might not be effective in capturing the uncertainties

I Can we design DNE limits in another way to reduce curtailments?
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A Data-Driven Dispatch Range Determination
1 Using data to understand uncertainties

I Data
I Wind power forecasting from each wind farm
I Observed wind power dispatch from each wind farm

I Statistic features: mean, variance, covariance
I Possible distribution functions

2 Determinate wind dispatch ranges considering the uncertainties

Goal of the Data-Driven DNE Limits
Maximize the probability that wind realization is within the DNE limits

max
`,u
P{` ≤ w̃ ≤ u}

s.t. `+ (1− v)u ∈ D ∀v ∈ [0, 1]n

D := {w ∈ Rn
+ : ∃p ∈ Rq

+ s.t. Ap + Bw ≤ c}, called wind dispatchbility set

p : conventional generation dispatch; recourse variables.
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Characterizing Uncertainties

I Perfect information

I Statistic models

I Limited information

I Moments approximation [Scarf (1958), Vandenberghe et al. (2007)]
I P1 := {ξ ∈ Rn : E[ξ] = µ;E[ξξ>] = δ}
I P2 := {ξ ∈ Rn : (E[ξ]− µ)>Λ−1(E[ξ]− µ) ≤ γ1;E[(ξ − µ)(ξ − µ)>] ≤ γ2}

I Density function approximation [Pardo (2006), Jiang and Guan (2015)]
I A family of distribution functions that is not “far” from a reference distribution

function

I Sample average approximation [Shapiro (2003), Shapiro and Nemirovski (2005)]
I True distribution is replaced by the empirical one
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Introduction to Data-Driven Approaches

I A typical data-driven approach

1 Design an uncertainty set: all probability distributions that satisfy the definition,
e.g., P1 and P2

2 Distributionally-robust optimization (a worst-case point of view)

max
`,u

inf
p∈P

P{` ≤ ξ ≤ u}

I Disadvantages

I Non-convex reformulations/approximations
I Overly conservative
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Sample Average Approximation

I Actual wind power dispatched at wind farm i in the next time period

w̃ = w∗ + ẽ,

w∗ ∈ Rn
+: the base point; ẽ ∈ Rn: error vector

I Replace the real probability by |S| samples (observations)wj = w∗ + ej:

P{(w̃ = w|w∗+ej)} =
1
|S|

j ∈ S

I Approximate the probability:

P{` ≤ w̃ ≤ u} =
∑

j∈S 1{` ≤ wj ≤ u}
|S|

where 1(` ≤ wj ≤ u) =

{
1 if ` ≤ wj ≤ u
0 otherwise
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Sample Average Approximation-Continued

I SAA reformulation

max
`,u

:P(` ≤ w̃ ≤ u)

⇓

max :
∑

j

zj

s.t. `− (1− zj) ∗M ≤ wj ≤ u + (1− zj) ∗M ∀j ∈ S

I Strong valid inequalities for SAA based on the mixing set results [Luedtke,
Ahmed & Nemhauser (2010)] [Günlük & Pochet (2001)] etc.

I A mixed-integer linear programming (MILP) problem that can be readily solved
by commercial solvers
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Solution Approach: Delayed Constraint and Column
Generation

I Master problem: SAA formulation + necessary dispatchability set constraints

max :
∑

j

zj

s.t. `− (1− zj) ∗M ≤ wj ≤ u + (1− zj) ∗M ∀j ∈ S

`, u ∈ Rn
+, z

j ∈ {0, 1} ∀j ∈ S

Apk + B(`+ (1− vk)u) ≤ c k = 1, 2, ......

k is the iteration number. 1

I Subproblem: Identify the most violated dispatchability constraints

max
v∈[0,1]n

min
s∈Rn

+

1̄>s

s.t. Ap + B(`k + (1− v)uk)− s ≤ c
I Observation: maximal violations always achieved by “corner” points of the “box”
I Solution: dualize the inner problem and convert it to a MILP problem

1Solving Two-stage Robust Optimization Problems Using a Column-and-Constraint Generation Method, B Zeng, L Zhao,
Operations Research Letters 41 (5), 457-461
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Case Study: 6-Bus System

I Configuration

I 6 bus, 7 lines
I 2 thermal generators (250MW*2)
I 2 wind farms (100MW*2)
I System loads: 266MW-434MW

I Wind data (Eastern Wind Dataset by NREL
1)

I Wind farm #1: site 3902 (W89.18, N41.68)
I Wind farm #2: site 3945 (W88.55, N40.49)

I Comparison

I Proposed method (D-DNE)
I Original method (LMP-weighted DNE)

1Available: http://www.nrel.gov/electricity/transmission/data_resources.html
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Case Study: A 6-Bus System

I Wind profiles (1240 hours, for training and validation)
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Case Study: 6-Bus System

I Load profile
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DNE Limits Comparison: Single Snapshot (t=240)

I D-DNE:

I Actual wind realization
lies in the D-DNE box

I No wind curtailment

I O-DNE

I Wind realization lies
outside of the O-DNE
box

I Wind curtailment occurs
in wind farm #2
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DNE Comparison: Multiple Snapshots

D-DNE
87.9% wind realizations are covered

O-DNE
37.5% wind realizations are covered
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Wind Curtailment Probability Under Worst-Case
Probability

I Goal: To see how robust our DNE limits are in the worst-case “scenario”

I Measurement: The probability of “coverage” under the worst case scenario
(probability)

I Approach: A lower bound on the probability given incomplete distribution
information, i.e., only the first two moments as in P1

1

1B. P. Van Parys, P. J. Goulart, and D. Kuhn, ”Generalized Gauss inequalities via semidefinite programming,” Mathematical
Programming, 2015.
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Economic Benefits

I D-DNE accommodates more wind power and incurs less dispatch cost
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Algorithm Scalability: IEEE 118-Bus System

I Configuration

I 118 bus, 186 lines, 76 conventional generators, 10 wind farms
I Wind data: from 10 sites in Eastern Wind Dataset by NREL

I Total simulation time: 388s (240 runs)
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Strengthened Formulation

I Computation efficiency is significantly improved

I Exploit the structure of SAA
I Only a few data points are dominant
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Summary

I Data-Driven Do-Not-Exceed Limits

I DNE limits considering uncertainties
I Data-driven, requiring little knowledge
I Computational efficiency and scalability
I Improved wind utilization

I Possible future research

I Multi time period
I Resource redispatch
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Thank you!

Comments?
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