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Minimize enerqgy costs

...Subject to security
Operator constraints.

Monitor & assess system
condition

...if needed, take action.

Image Source: U.S.-Canada Power System Outage Task Force, ISO New England
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Challenges: * Some variables cannot be measured.
» Limited number of measurements.
» Corrupted with noise + bad data.

Estimate all state variables using incomplete,
Inaccurate measurements.

(SE is the system operator’s eyes and ears)
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Challenges: ° Predictions cannot be measured.
« Limited amount of data.
« Data corrupted with noise + bad data.

Make predictions using incomplete, inaccurate
data.

(State estimation is just a special case)



Grid
Events

The August 14", 2003 Northeast Blackout

Figure 5.2. Timeline Phase 1
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MISO'’s state estimator was inactive for most of the period

between 12:15 and 15:34 EDT.

Could not identify the system as being on the verge of collapse.

[US-Canada Power System Outage Task Force 2004, p. 48]




Figure 2.3 Cleveland-Michigan Phase Angle Difference Leading Up to the
August 2003 Blackout
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Source: North American Electric Reliability Corporation Real-Time Application of PMUs to Improve Reliability Task Force,
Real-Time Application of Synchrophasors for Improving Reliability (Princeton, NJ, 2010), http://www.nerc.com/filez/rapirtf.html.

Image Source: MIT Energy Initialtive, “Future of the Electric Grid Study”, 2011



Integration of Variable Generation

_ Situational awareness ,

* Aggregating data on current system status from various sources including
EMS/SCADA, load and variable generation forecast systems, and operational
planning and/or market results identifying available resources to provide
succinct, meaningful displays that support situational awareness.

Real-time reliability/risk assessment

* Evaluation of various dimensions of risk associated with the present and
future operating conditions considering elements such as total ramping
capability from available resources (supply and demand) and the uncertainty
in unit availability, load, and variable generation.

Operator decision support

» Evaluation and recommendation of mitigating actions that can be
implemented to solve predicted or realized reliability/security concerns.

» Three key areas of operation support.
« All rely crucially on good state estimation.

[NERC IVGTF 2004 Task 2.4, 2011]



Scope

* Focus on State Estimation + classical SCADA measurements.

— Voltage magnitude, power flows and injection.
— Classical quadratic formulation due to Schweppe.
— Core issue: Quadratic nonconvexity -> Strongly NP-hard.
« PMUs / Synchrophasors?
— Quadratic nonconvexity remain (unless all buses have perfect PMUSs).
— Validating consistency (against noisy / bad data) -> Strongly NP-hard.
— Avoid to keep discussion simple.
« Other measurements (e.g. dg-axis current)?
— Can be reformulated as quadratic by adding new variables.

— Quadratic nonconvexity remain -> Strongly NP-hard.
— Again, avoid to keep discussion simple.




In this talk...
* Review: WLS Estimation
« Local convergence and
spurious estimates
« Approaches to avoid local
convergence
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Formulation

State Variables Quadratic Model (Known) Measurements
(Unknown) (Known)
mn
ZGC # #bié{bl,...,bm}
Voltage phasors Voltage magnitude,
Power measurements
e e e e e = = = = = — —
Why quadratic model?
Magnitude-squared is quadratic: Power is voltage times current, and
10 0] current is linear wrt voltage, ¢ =Y z,

1
zl|2 =0 0 0] ,— 2*Fh 2 Re{ciz1} = 52*(Y*E1 + FE1Y)z

Write each measurement _
Model mismatch &

b’l — FZ(Z) _|_ Ei #~ measurement error

Known Unknown
Find estimator 2 = z that best explains the measurements.



Weighted Least Squares

[Schweppe 1970]

Minimize the residual A ...
sum-of-squares — ININnimize sz
IE(CH

o

Proposition. Z & Zz is the maximum likelihood estimator if each

|
| |
l e; = b; — F;(2) (measurement error) |
: |
|

Remark. Must rescale weights w, , ..., w,, to reflect “trustworthiness” of
the data.

« Some data may be bad (variances may be large).
« Bad data are not marked.

Bad Data Detection ®h,
If the i-th residual is large, : R
then mark it as bad. r5< | -t e Fi(z)
r; = b; — F;(2) >’
o ©® (Other formulations

are also possible)



Solving the Optimization

m
2 = minimize E w;[Fi(z) — b;]?
zelr

Nonlinear Least Squares. Schweppe recommended Gauss-Newton.
Given initial guess x°, do k =0,1,2,...

m

21 = minimize Z wi[F;(2¥) + VF;(2")(z — 2*) — b’
vetr o

Linearize F,(x) about x = xX
Adopting a step-size rule guarantees convergence.

Gauss-Newton is a local search method.

Other local search methods: Global search methods
* (Regular) Newton’s method, * Branch & Bound
 Gradient descent, « Simulated annealing
« Stochastic gradient descent. * Genetic Algorithms

Only achieve local optimality. Exponential worst-case time.



In this talk...

* Review: WLS Estimation

* Local convergence and
spurious estimates

« Approaches to avoid local
convergence



Local Convergence

m
2 £ minimize Z w; [Fi(x) — bi]Q
zelr i

When F(.) is nonlinear, the objective is generally nonconvex.
Local search can only converge to critical points.
Finding the global minimum is NP-hard.

Only the global minimum gives max likelihood estimation.

Critical points

(May only be a
AN

saddle point)
Local minima  Global minimum
(Even finding a local minimum is NP-hard!)




“In the case of statistical and machine
learning problems, solving a parameter
estimation problem to very high accuracy
often yields little to no improvement in
actual prediction performance, the real

metric of interest in applications.”
— Boyd et al.

But in power systems state estimation,
Inaccuracy can be very dangerous.



Example: Two-Bus System
[R.Y. Zhang, Lavaei, Baldick 2017]

b,=F,(z) P=
b, = F,(2) 2= Fole) - 07
b, = F4(2) ~ _ b; = F5(2)
~ Y,,=1/(0.01+ 0.1j) p.u. ~N
(O (O
|z1] = 1.0 p.u. |22| = 0.829 p.u.
System state: L2 =0 deg Lzp = —13.2 deg
Four noise-free measurements:
Bus 1 volt. magn. by = Fy(2) = 2721
Bus 2 Pinjection by = F5(z) = Re [(Y] 5(21 — 22)" 22]
Bus 2 Qinjection b3 = F3(z) = Im [Y]5(21 — 22)" 2]
Bus 1 P injection b4 = F4(z) = Re _ 1’*:2(22 — 21)*21]

Find:

Unknown system state z,,z,
Given: Model functions F,(.),...,F,(.)

Noise-free measurements b,,...,b,



I —

i Find:  Unknown system state z,,z, : by = F1(2)
| Given:_Model functions Fy(.),...,F,(.) : by = 13(2)
' Noise-free measurements b,,...,.b, | bs = F5(2)
' | by = Fi(2)

Consider nonlinear least-squares 4

A PR Let’s plot the
= (21, —b;]? Ok .
. 11;11?21312116159 ;[FZ(ZI‘:EQ) i objective function

The global minimizer is (x4,X,) = (z4,2,), with zero objective. Correct

Problem has 3 dofs: Estimate
X4, [X5], @and angle x.. 0

Let’s fix x, = z,, and

plot over |x,| and angle x,. 207

|z1] = 1.0 p.u. 407
4332

£z =0 deg 60

22| = 0.829 p.u. Spurious

Lzyg = —13.2 deg Estimate -so}
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~ A
Z = minimize E [F;(x
zeCn :

Indeed, we find four critical points, only one of which is the correct estimate
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2 £ minimize Z [F;(x) — b;]?
zeCn :

Indeed, we find four critical points, only one of which is the correct estimate

|21 | 1 [ (0.846 | 0
|z2| | € 0.829 0.401 |, {0
_Axg_ _—13.2°_ _—32.0°_ _0_
Global Saddle Local
minim. point maxim.

1
Correct Perfect match.
.82 E—_—
Estimate _012 290
[ 0.870 |
Spgrlous 0.345 | w=ip Measurement error?
Estimate _35.7° Bad data?




Local convergence gives spurious estimates
[R.Y. Zhang, Lavaei, Baldick 2017]

Can only expect to find critical points of weighted least
squares problem

2 £ minimize Z [Fi(z) — bi]2
i=1

CBGC"

» Affects even the simplest problems with perfect data.
» Gives plausible but incorrect estimates.
» Misleads re: measurement error / bad data.

Critical points do not imply:

21 = v/ F1(2), * Nonunique solutions
Y12|221 ’  Inherent “hardness” of the
Re 2y — Fy(2)/z21 + z21Re Y] 2 + Im 2oIm Y] 5 | problem

|
|
|
F(2)ImY) o + F3(2)Re Y] o I < Unobservable states
|
|
ReY) o I

I
|
I
| Imzy =
I
|
I
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* Review: WLS Estimation
« Local convergence and
spurious estimates
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convergence



Convex Relaxations
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Consider finding the furthermost point of a nonconvex set.

« Enclose the nonconvex set within a convex set. Then any local minimum is the
global minimum (by definition).

* (Success) If that point also lies within the original nonconvex set, then it is a
global minimum for the original problem.

« (Failure) If that point does not lie within the original set, then it may be useless.



. [Madani, Lavaei & Baldick 2016]
The Penalized SDP Method [vu zhang, Madani. Lavaei 2017]

reCn

minimize Z w;i(z* Az — b;)? (WLS)
i=1

minimize Tr CX + Z w;[Tr A; X — b;]*  (Relax)

X0 -
1=1

1. Pick special choice of matrix C and solve (Relax)
2. If rank(X) = 1, compute xx* = X and output x.

: Theorem (Candes & Recht, Candes & Tao). If A, are I
| “random”, b, are “noise-free”, and m is “sufficiently large”, |
| then penalized SDP outputs the global optimum of (WLS) |
I with overwhelming probability. :

» Power systems are not “random”; data are seldom “noise-free”.
* Nevertheless, often close to global optimum.
* Requires solving an SDP to high accuracy. Complexity may be

reduced by exploiting structure. [Andersen, Dahl, Vandenberghe 2014]
[Madani, Kalbat, Lavaei 2015] [Zheng et al. 2016] [R.Y. Zhang & Lavaei 2017]




. [Madani, Lavaei & Baldick 2016]
The Penalized SDP Method [Yu Zhang, Madani, Lavaei 2017]

reCn

minimize Z wi(x* Az — b;)? (WLS)
i=1

. . . ' ) . . 2
mlgl(lil_l(l)lze TrCX + z_; w;[Tr A; X — b;] (Relax)

1. Pick special choice of matrix C and solve (Relax)
2. If rank(X) = 1, compute xx* = X and output x.

100 Random instances of IEEE 118-bus system [ZML2017]

0.06

Gauss-Newton

0.05¢ on (WLS) with

o 0.04 [ cold start

Objective _
in (wLs) %%
0.02}
0.01

Penalized SDP




Adding Redundant Measurements

[R.Y. Zhang, Lavaei, Baldick 2017]

Consider solving WLS with m perfect measurements
m

minimize Z(ZB*AzCB — b;)? where each b; = 2* A;2

zeCn
1=1

using Gauss-Newton with random initial point x°.

What is the effect of increasing m?

1

0.9

0.8
10.7

num. meas 106

num. dof 25

10.5

104

3 03

WLS e 0.2
becomes o
convexX...? o1 o2 03 04 05 06 07 08 08 1 °

H-To - sz

warm-start cold-start

Success

rate over 100
trials for IEEE 39-
bus problem

« Begin with power
flow constraints

« Randomly add new,
perfect
measurements
without replacement



Adding Redundant Measurements

Consider solving WLS with m perfect measurements
m

minimize 5 (z*A;z — b;)* where each b; = 2*A;2
CL‘E(CTL 1
1=

using Gauss-Newton with random initial point x°.

: Theorem (Ge, Lee, Ma 2016). If A, are “random element-
1 wise”, mis “sufficiently large”, then after adding a small
I regularization term, every local minimum is a global

I' minimum to the original problem with overwhelming

I probability.

» Again, power systems are not “random”, data are not “noise-free”.
« Should be strongly affected by model / measurement error.
« But much lower time / memory complexity than PSDP.



In Summary...

« State estimation is formulated as nhonconvex optimization.
« Classic statistical framework of parameter estimation.
« But local convergence is a significant issue for power
systems.
— Affects all networks, wven with perfect data.
— Gives plausible but incorrect estimations.
— Misleads re: measurement error and bad dad.
» Global optimization: Penalized SDP and Redundant
Measurements
— Strong guarantees for random problems.

— Good empirical performance for the practical problem: near-
global-optimal.

— Future work is to fully understand “why”.

Thank you for your attention



Semidefinite Relaxations

Begin with Schweppe’s wrgighted least squares problem:

32 miniglize sz[Fz(x) — b;]? where Fj(2) = 2" Az
zelm —

Define quadratic variable X = xz™ to make quadratic models linear
Fi(x) =ax"Ajx =Tr Ajzx™ = Tr A; X.

Then,
55" sz (Tr A; X — b;)?

X=xx*
“Xis a rank-1 / =1
semidefinite matrix” Nonconvex

Convex

Classic convex relaxation

minimize TrCX + Z w;[Tr A; X — b;]?
“Xisa — Xx=0 \ i=1
semidefinite

matrix” Encourage low-rank solutions



