Convex Formulation of the Optimal Transmission Switching Problem

Salar Fattahi

Joint work with: Javad Lavaei, Alper Atamturk

FERC 2017

Department of Industrial Engineering and Operations Research University of California, Berkeley

Outline

1. Introduction and problem formulation.
2. Tightening the linearized relaxation.

- Effect on practical problems with linear objective.

3. Convex model of the problem with quadratic objective.

- Different conic relaxations
- Performance of the convex model in practical problems.

4. Boosting the speed using heuristic rounding schemes.

Power Systems

Optimal Transmission Switching Problem: Find an optimal topology of the power network that minimizes the operational cost, subject to energy demand and operating constraints.

OTS Problem

- In plain language: Pick a subset of lines in the network that maximizes the performance.
- Intuition: Adding more lines increases the capacity of the network.
- Does the problem correspond to a conventional network flow problem? Min cost network flow or max flow problem.
- Answer: No!
- Key difference: We have more variables and constraints on the edges.

OTS Problem

- In plain language: Pick a subset of lines in the network that maximizes the performance.
- Intuition: Adding more lines increases the capacity of the network.
- Does the problem correspond to a conventional network flow problem? Min cost network flow or max flow problem.
- Answer: No!
- Key difference: We have more variables and constraints on the edges.

Max capacity $=300 \mathrm{MW}$

OTS Problem

- In plain language: Pick a subset of lines in the network that maximizes the performance.
- Intuition: Adding more lines increases the capacity of the network.
- Does the problem correspond to a conventional network flow problem? Min cost network flow or max flow problem.
- Answer: No!
- Key difference: We have more variables and constraints on the edges.

Max capacity $=300 \mathrm{MW}$

Problem Formulation

\square Decision variables: $\quad \mathbf{x} \triangleq\left[x_{1}, \ldots, x_{n_{s}}\right]^{\top}, \theta \triangleq\left[\theta_{1}, \ldots, \theta_{n_{b}}\right]^{\top} \mathbf{f} \triangleq\left[f_{1}, \ldots, f_{n_{l}}\right], \mathbf{p} \triangleq\left[p_{1}, \ldots, p_{n_{g}}\right]^{\top}$,
G Generation costs:

- Power generation costs:

$$
\sum_{i=1}^{n_{g}} a_{i} \times\left(p_{i}\right)^{2}+b_{i} \times p_{i} \quad \sum_{i=1}^{n_{g}} b_{i} \times p_{i}
$$

- Constraints:
- Switch status:

$$
x_{i} \in\{0,1\}
$$

- Generator limits:
$p_{i ; \text { min }} \leq p_{i} \leq p_{i ; \text { max }}$
- Flow limits for inflexible lines:

$$
-f_{i j ; \max } \leq f_{i j} \leq f_{i j ; \max } \quad \forall(i, j) \in \mathcal{L} \backslash \mathcal{S}
$$

- Flow limits for flexible lines:
$-f_{i j ; \max } \times x_{i j} \leq f_{i j} \leq f_{i j ; \max } \times x_{i j} \quad \forall(i, j) \in \mathcal{S}$
- Physical constraints for inflexible lines: $\quad f_{i j}=B_{i j}\left(\theta_{i}-\theta_{j}\right) \quad(i, j) \in \mathcal{L} \backslash \mathcal{S}$
- Physical constraints for flexible lines: $\quad f_{i j}=B_{i j}\left(\theta_{i}-\theta_{j}\right) x_{i j} \quad(i, j) \in \mathcal{S}$
- Conservation of flows:

$$
p_{k}-d_{i}=\sum_{j \in \mathcal{N}_{l}^{+}(i)} f_{i j}-\sum_{j \in \mathcal{N}_{l}^{-}(i)} f_{j i}
$$

- Cardinality constraint:

$$
\sum_{(i, j) \in \mathcal{S}} x_{i j} \geq|\mathcal{L}|-r
$$

Linearization

- We can also add time horizon, security constraints, etc.
- OTS is an NP-hard problem.
- Nonlinear and nonconvex constraints:

$$
f_{i j}=B_{i j}\left(\theta_{i}-\theta_{j}\right) x_{i j} \quad(i, j) \in \mathcal{S}
$$

Linearization

- We can also add time horizon, security constraints, etc.
- OTS is an NP-hard problem.
- Nonlinear and nonconvex constraints:

$$
\begin{gathered}
f_{i j}=B_{i j}\left(\theta_{i}-\theta_{j}\right) x_{i j}(i, j) \in \mathcal{S} \\
B_{i j}\left(\theta_{i}-\theta_{j}\right)-M_{i j}\left(1-x_{i j}\right) \leq f_{i j} \leq B_{i j}\left(\theta_{i}-\theta_{j}\right)+M_{i j}\left(1-x_{i j}\right) \\
-f_{i j ; \max } \times x_{i j} \leq f_{i j} \leq f_{i j ; \max } \times x_{i j}
\end{gathered}
$$

Linearization

- We can also add time horizon, security constraints, etc.
- OTS is an NP-hard problem.
- Nonlinear and nonconvex constraints:

$$
\begin{aligned}
& f_{i j}=B_{i j}\left(\theta_{i}-\left(\theta_{j}\right) x_{i j}\right.(i, j) \in \mathcal{S} \\
& \quad \text { Exact Linearization! } \\
& B_{i j}\left(\theta_{i}-\theta_{j}\right)-M_{i j}\left(1-x_{i j}\right) \leq f_{i j} \leq B_{i j}\left(\theta_{i}-\theta_{j}\right)+M_{i j}\left(1-x_{i j}\right) \\
&-f_{i j ; \max } \times x_{i j} \leq f_{i j} \leq f_{i j ; \text { max }} \times x_{i j}
\end{aligned}
$$

Question: How large should $M_{i j}$ be?

1. Small values for $M_{i j}$ can lead to tighter relaxations and hence, fewer iterations.
2. Large values for $M_{i j}$ can lead to numerical issues.

Definition: $M_{i j}$ is called feasible if it results in exact linearization.
Theorem: For a flexible line (i, j) :

1. There is no efficient algorithm to find the smallest feasible $M_{i j}$.
2. There is no efficient approximation algorithm to find the smallest feasible $M_{i j}$.
3. S. Fattahi, J. Lavaei, A. Atamturk, "Promises of Conic Relaxations in Optimal Transmission Switching of Power Systems", submitted for publication.

Linearization

- Small value for $M_{i j}$ is highly desirable.
- Trivial upper bounds for feasible $M_{i j}$.
- Can we go from trivial to nontrivial values?
- Common practice: add upper bounds on the absolute value of angles.
- May significantly shrink the feasible region.

Observation: Only a small subset of lines are considered as flexible.

Nontrivial upper bounds can be found if there is a connected sub-network with no switches.

Simulation Results

- We consider the IEEE 118-bus system. This system has 118 nodes and 185 lines.
- The objective is assumed to be linear.
- We fix a randomly generated connected sub-graph of the system with 117 lines.

Simulation Results

- We consider the IEEE 118 -bus system. This system has 118 nodes and 185 lines.
- The objective is assumed to be linear.
- We fix a randomly generated connected sub-graph of the system with 117 lines.
- Variables:
> 68 binary variables corresponding to switches.
> 118 continuous variables corresponding to angle of each node.
>185 continuous variables corresponding to the flow of each line.
>54 continuous variables corresponding to the generation of different generators.
$>$ Lower bound on the number of ON switches: 45

Simulation Results

- We consider the IEEE 118-bus system. This system has 118 nodes and 185 lines.
- The objective is assumed to be linear.
- We fix a randomly generated connected sub-graph of the system with 117 lines.
- Variables:
>68 binary variables corresponding to switches.
> 118 continuous variables corresponding to angle of each node.
>185 continuous variables corresponding to the flow of each line.
>54 continuous variables corresponding to the generation of different generators.
$>$ Lower bound on the number of ON switches: 45
- Intel Core i7 quad-core 2.50 GHz CPU and 16GB RAM.
- Serial implementation in MATLAB using the CVX framework and Gurobi solver.
- The optimality threshold is set to 0.01.

With designed upper bounds on $M_{i j}$	Without designed upper bounds on $M_{i j}$
2 min	46 min

Simulation Results

Performance with respect to different load factors

Simulation Results

- If cardinality lower bound is zero, $<1 \mathrm{sec}$ for Gurobi to solve the problem.
- Linear objective.
- If the objective function is quadratic, Gurobi finds the optimal solution after 72 min!

Convex Model

- Existing methods are based on branch and bound, cutting plane, dynamic programming, or line rankings.
- Goal: Find a convex model of the problem.
- Useful for convex hull pricing. [Gribik 07]
- Can be adopted to solve OTS problem for AC systems.

Convex Model

- Existing methods are based on branch and bound, cutting plane, dynamic programming, or line rankings.
- Goal: Find a convex model of the problem.
- Useful for convex hull pricing. [Gribik 07]
- Can be adopted to solve OTS problem for AC systems.

$$
\mathbf{w} \triangleq\left[\mathbf{x}^{\top}, \mathbf{p}^{\top}, \mathbf{f}^{\top}, \theta^{\top}\right]^{\top}
$$

Convex Model

- Existing methods are based on branch and bound, cutting plane, dynamic programming, or line rankings.
- Goal: Find a convex model of the problem.
- Useful for convex hull pricing. [Gribik 07]
- Can be adopted to solve OTS problem for AC systems.

$$
\mathbf{w} \triangleq\left[\mathbf{x}^{\top}, \mathbf{p}^{\top}, \mathbf{f}^{\top}, \theta^{\top}\right]^{\top}
$$

Convex Model

- Existing methods are based on branch and bound, cutting plane, dynamic programming, or line rankings.
- Goal: Find a convex model of the problem.
- Useful for convex hull pricing. [Gribik 07]
- Can be adopted to solve OTS problem for AC systems.

$$
\mathbf{w} \triangleq\left[\mathbf{x}^{\top}, \mathbf{p}^{\top}, \mathbf{f}^{\top}, \theta^{\top}\right]^{\top}
$$

- If the optimal W has rank-1, the relaxation is exact.

Bad news: SDP relaxation is almost as bad as QP.

Theorem: For generic load profiles, the SDP will work with probability 0.

- The optimality gap is $3 \%-80 \%$ in IEEE test cases.
- Need to strengthen the formulation by adding valid inequalities.

Valid Inequalities

Valid Inequalities

Valid Inequalities

Nonlinear constraint

Valid Inequalities

$$
\mathbf{u}^{\top} \mathbf{W} \mathbf{v}-\left(\mathbf{v}^{\top} z_{1}+\mathbf{u}^{\top} z_{2}\right) \mathbf{w}+z_{1} z_{2} \geq 0
$$

Valid Inequalities

$\mathbf{u}^{\top} \mathbf{W} \mathbf{v}-\left(\mathbf{v}^{\top} z_{1}+\mathbf{u}^{\top} z_{2}\right) \mathbf{w}+z_{1} z_{2} \geq 0$

Simulation Results

I. IEEE 14-bus with 12 load scenarios and 5 switches:

IEEE 30-bus with 9 load scenarios and 7 switches:

Simulation Results

I IEEE 14-bus with 12 load scenarios and 5 switches:

IEEE 30-bus with 9 load scenarios and 7 switches:

Simulation Results

I IEEE 57-bus with 8 load scenarios and 10 switches:

I. IEEE 118-bus with 10 load scenarios and 20 switches and lower bound equal to 10:

Boosting the Speed: Heuristic Rounding

- The SSDP is extremely time-consuming to solve.
- 10 min to solve IEEE 118-bus system.
- It finds the optimal objective, but not the feasible binary variables.
- We can resort to RLT with heuristic rounding.
- We consider the IEEE 118-bus system with same settings.
- Number of variables in RLT relaxation: 90,525
- Number of constraints in RLT relaxation: 376,333
- Implementing RLT relaxation in Gurobi was extremely inefficient.
- Instead, we used MOSEK solver with CVX framework in MATLAB.
- Only 2 levels of RLT were needed in our simulations.
- Number of rounded binary variables after first round of RLT: 50/65

Numerical Results

Performance with respect to cardinality lower bound

Performance with respect to different load factors

Extension to Unit Commitment

- Binary variables for generators (ON/OFF).
- Longer time-horizon.
- Ramping constraints, minimum up-and down-time constraints.

Extension to Unit Commitment

- Binary variables for generators (ON/OFF).
- Longer time-horizon.
- Ramping constraints, minimum up-and down-time constraints.

	IEEE 14-bus over 24 hours:
	SDP relaxation: 162600 Reduced-strengthened SDP relaxation: 205838

Conclusions

- OTS problem with linear and quadratic objectives.
- Finding a good MILP formulation of OTS problem may be hard.
- The MILP formulation can be tightened if some part of the topology is fixed.
- Convex model for OTS problem with quadratic objective.
- Strong valid inequalities.
- Rounding heuristics in order to boost the running time.
- Extension to Unit Commitment problem.

Thank you!

