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Outline	

1.  Introduc<on	and	problem	formula<on.	

2.  Tightening	the	linearized	relaxa<on.	

•  Effect	on	prac<cal	problems	with	linear	objec<ve.	

3.  Convex	model	of	the	problem	with	quadra<c	objec<ve.	

•  Different	conic	relaxa<ons	
•  	Performance	of	the	convex	model	in	prac<cal	problems.	

	

4.  Boos<ng	the	speed	using	heuris<c	rounding	schemes.		



q 	Power	system:		
v  A	large-scale	system	consis<ng	of	generators,	

loads,	lines,	etc.		

v  Used	for	genera<ng,	transpor<ng	and	
distribu<ng	electricity.		

Generators	 Loads	

 
 

Power 
Network 

 
 

Op?mal	Transmission	Switching	Problem:	Find	an	op<mal	topology	of	the		power	network	that	
minimizes	the	opera<onal	cost,	subject	to	energy	demand	and	opera<ng	constraints.	

Power	Systems	
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OTS	Problem	

	
•  In	plain	language:	Pick	a	subset	of	lines	in	the	network	that	maximizes	the	performance.	

•  Intui<on:	Adding	more	lines	increases	the	capacity	of	the	network.	
•  Does	the	problem	correspond	to	a	conven<onal	network	flow	problem?	Min	cost	network	flow	

or	max	flow	problem.	
•  Answer:	No!	
•  Key	difference:	We	have	more	variables	and	constraints	on	the	edges.	
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Problem	Formula?on	

q  Decision	variables:	

q  	Genera<on	costs:		

§  Power	genera<on	costs:	

q  Constraints:	

§  Switch	status:	

§  Generator	limits:	

§  Flow	limits	for	inflexible	lines:	

§  Flow	limits	for	flexible	lines:	

§  Physical	constraints	for	inflexible	lines:	

§  Physical	constraints	for	flexible	lines:	

§  Conserva<on	of	flows:	

§  Cardinality	constraint:		
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Lineariza?on	

•  We	can	also	add	<me	horizon,	security	constraints,	etc.	
•  OTS	is	an	NP-hard	problem.	
•  Nonlinear	and	nonconvex	constraints:	

fij = Bij(✓i � ✓j)xij (i, j) 2 S
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Ques<on:	How	large	should											be?		Mij

1.  Small	values	for											can	lead	to	<ghter	relaxa<ons	and	hence,	fewer	itera<ons.	
2.  Large	values	for											can	lead	to	numerical	issues.	

Mij

Mij

Theorem:	For	a	flexible	line										:	
1.  There	is	no	efficient	algorithm	to	find	the	smallest	feasible									.	
2.  There	is	no	efficient	approxima<on	algorithm	to	find	the	smallest	feasible									.	

Defini<on:										is	called	feasible	if	it	results	in	exact	lineariza<on.	Mij

(i, j)
Mij

Mij

1.  S.	Fadahi,	J.	Lavaei,	A.	Atamturk,	“Promises	of	Conic	Relaxa<ons	in	Op<mal	Transmission	Switching	of	Power	Systems”,	submided	for	publica<on.	

�f

ij;max

⇥ x

ij

 f

ij

 f

ij;max

⇥ x

ij



6	

Lineariza?on	

•  Small	value	for										is	highly	desirable.											
•  Trivial	upper	bounds	for	feasible									.	
•  Can	we	go	from	trivial	to	nontrivial	values?	
•  Common	prac<ce:	add	upper	bounds	on	the	absolute	value	of	angles.	
•  May	significantly	shrink	the	feasible	region.	

Mij

Nontrivial	upper	bounds	can	be	found	if	there	is	a	connected	sub-network	with	no	switches.	

Observa<on:	Only	a	small	subset	of	lines	are	considered	as	flexible.	

Mij
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Simula?on	Results	

•  We	consider	the	IEEE	118-bus	system.	This	system	has	118	nodes	and	185	lines.	
•  The	objec<ve	is	assumed	to	be	linear.	
•  We	fix	a	randomly	generated	connected	sub-graph	of	the	system	with	117	lines.	
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•  Variables:	

Ø  68	binary	variables	corresponding	to	switches.	
Ø  118	con<nuous	variables	corresponding	to	angle	of	each	node.	
Ø  185	con<nuous	variables	corresponding	to	the	flow	of	each	line.	
Ø  54	con<nuous	variables	corresponding	to	the	genera<on	of	different	generators.	
Ø  Lower	bound	on	the	number	of	ON	switches:	45	



7	

Simula?on	Results	

•  We	consider	the	IEEE	118-bus	system.	This	system	has	118	nodes	and	185	lines.	
•  The	objec<ve	is	assumed	to	be	linear.	
•  We	fix	a	randomly	generated	connected	sub-graph	of	the	system	with	117	lines.	
•  Variables:	

Ø  68	binary	variables	corresponding	to	switches.	
Ø  118	con<nuous	variables	corresponding	to	angle	of	each	node.	
Ø  185	con<nuous	variables	corresponding	to	the	flow	of	each	line.	
Ø  54	con<nuous	variables	corresponding	to	the	genera<on	of	different	generators.	
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•  Intel	Core	i7	quad-core	2.50	GHz	CPU	and	16GB	RAM.		
•  Serial	implementa<on	in	MATLAB	using	the	CVX	framework	and	Gurobi	solver.	
•  The	op<mality	threshold	is	set	to	0.01.	

With	designed	upper	
bounds	on						

Without	designed	upper	
bounds	on		

2	min	 46	min	

MijMij
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Simula?on	Results	

Performance	with	respect	to	cardinality	lower	
bound	
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•  If	cardinality	lower	bound	is	zero,	<	1	sec	for	Gurobi	to	solve	the	problem.	

•  Linear	objec<ve.	

•  If	the	objec<ve	func<on	is	quadra<c,	Gurobi	finds	the	op<mal	solu<on	amer	72	min!	



Convex	Model	

•  Exis<ng	methods	are	based	on	branch	and	bound,	cunng	plane,	dynamic	programming,	or	line	
rankings.	

•  Goal:	Find	a	convex	model	of	the	problem.		
•  Useful	for	convex	hull	pricing.	[Gribik	07]	
•  Can	be	adopted	to	solve	OTS	problem	for	AC	systems.	

9	
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Bad	news:	SDP	relaxa<on	is	almost	as	bad	
as	QP.	

Theorem:	For	generic	load	profiles,	the	
SDP	will	work	with	probability	0.	

•  The	op<mality	gap	is	3%-80%	in	IEEE	test	
cases.	

	
•  Need	to	strengthen	the	formula<on	by	

adding	valid	inequali<es.	

•  If	the	op<mal	W	has	rank-1,	the	
relaxa<on	is	exact.	
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u>Wv � (v>z1 + u>z2)w + z1z2 � 0



Valid	Inequali?es	

u>w � z1 � 0 v>w � z2 � 0

u>ww>v � (v>z1 + u>z2)w + z1z2 � 0

Theorem:	This	relaxa<on	is	exact	for	large	loads	and/
or	small	line	ra<ngs.		

Based	on	Sherali-Adams’	RLT	relaxa<on.		
Nonlinear	constraint	

Linearize!	
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u>Wv � (v>z1 + u>z2)w + z1z2 � 0

minimize

w2Rns+ng+nl+nb
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Simula?on	Results	

q  IEEE	14-bus	with	12	load	scenarios	and	5	switches:		

q  IEEE	30-bus	with	9	load	scenarios	and	7	switches:		
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Simula?on	Results	

q  IEEE	57-bus	with	8	load	scenarios	and	10	switches:		

q  IEEE	118-bus	with	10	load	scenarios	and	20	switches	and	lower	bound	equal	to	10:		
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Boos?ng	the	Speed:	Heuris?c	Rounding	

•  The	SSDP	is	extremely	<me-consuming	to	solve.	
•  10	min	to	solve	IEEE	118-bus	system.	
•  It	finds	the	op<mal	objec<ve,	but	not	the	feasible	binary	variables.	
•  We	can	resort	to	RLT	with	heuris<c	rounding.	

•  We	consider	the	IEEE	118-bus	system	with	same	senngs.		

•  Number	of	variables	in	RLT	relaxa<on:	90,525	
•  Number	of	constraints	in	RLT	relaxa<on:	376,333	

•  Implemen<ng	RLT	relaxa<on	in	Gurobi	was	extremely	inefficient.		
•  Instead,	we	used	MOSEK	solver	with	CVX	framework	in	MATLAB.		

•  Only	2	levels	of	RLT	were	needed	in	our	simula<ons.	
•  Number	of	rounded	binary	variables	amer	first	round	of	RLT:	50/65		
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Numerical	Results	

Performance	with	respect	to	cardinality	lower	
bound	

Performance	with	respect	to	different	
load	factors		
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Extension	to	Unit	Commitment	

•  Binary	variables	for	generators	(ON/OFF).	
•  Longer	<me-horizon.	
•  Ramping	constraints,	minimum	up-	and	down-<me	constraints.	
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Conclusions	

•  OTS	problem	with	linear	and	quadra<c	objec<ves.	

•  Finding	a	good	MILP	formula<on	of	OTS	problem	may	be	hard.	

•  The	MILP	formula<on	can	be	<ghtened	if	some	part	of	the	topology	is	fixed.	

•  Convex	model	for	OTS	problem	with	quadra<c	objec<ve.	

•  Strong	valid	inequali<es.	

•  Rounding	heuris<cs	in	order	to	boost	the	running	<me.	

•  Extension	to	Unit	Commitment	problem.	



Thank	you!	


