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Outline

1. Introduction and problem formulation.
2. Tightening the linearized relaxation.

e Effect on practical problems with linear objective.

3. Convex model of the problem with quadratic objective.

e Different conic relaxations
* Performance of the convex model in practical problems.

4. Boosting the speed using heuristic rounding schemes.



Power Systems

O Power system:
* A large-scale system consisting of generators,
loads, lines, etc.
+» Used for generating, transporting and
distributing electricity.
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Optimal Transmission Switching Problem: Find an optimal topology of the power network that
minimizes the operational cost, subject to energy demand and operating constraints.




OTS Problem

* In plain language: Pick a subset of lines in the network that maximizes the performance.

* Intuition: Adding more lines increases the capacity of the network.
* Does the problem correspond to a conventional network flow problem? Min cost network flow
or max flow problem.

* Answer: No!
* Key difference: We have more variables and constraints on the edges.
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Problem Formulation

O Decision variables: X2 @y, m0,] 02 [01,...,0,,] £2[f1,.... ful, P2 [p1,-~,png]T

Y

J Generation costs:

=  Power generation costs: Z a; X (pz')2 + b X p; Z bi X p;
i=1 i=1
L Constraints:
=  Switch status: z; € {0,1}
*  Generator limits: Pi;min < Pi < Pi; max
»  Flow limits for inflexible lines: —fijimax < fij < fijimax  V(i,7) € L\S
= Flow limits for flexible lines: — fijimax X Tij < fij < fijimax X x5 V(i,5) €S

= Physical constraints for inflexible lines:  f;; = B;;(6; — 0;) (i,7) € L\S

= Physical constraints for flexible lines:  f;; = B;,;(0; — 0,)x;; (i,j) € S

* Conservation of flows: Pr—d; = Z fij — Z fii
JENT (1) JENT (9)
= Cardinality constraint: Z zij > |L] —r
(i,7)€S



Linearization

We can also add time horizon, security constraints, etc.

OTS is an NP-hard problem.
Nonlinear and nonconvex constraints:

fig = Bij(0s — 05)xy;

(i,j) € S
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Question: How large should M;; be?

1. Small values for M;; can lead to tighter relaxations and hence, fewer iterations.
2. Largevalues for M;; canlead to numerical issues.

Definition: M is called feasible if it results in exact linearization.

Theorem: For a flexible line (¢, j):
1. There is no efficient algorithm to find the smallest feasible M.
2. There is no efficient approximation algorithm to find the smallest feasible M;;.

1. S. Fattahi, J. Lavaei, A. Atamturk, “Promises of Conic Relaxations in Optimal Transmission Switching of Power Systems”, submitted for publication.



Linearization

* Small value for M;; is highly desirable.

* Trivial upper bounds for feasible M;;.

 Can we go from trivial to nontrivial values?

« Common practice: add upper bounds on the absolute value of angles.
* May significantly shrink the feasible region.

Observation: Only a small subset of lines are considered as flexible.

Nontrivial upper bounds can be found if there is a connected sub-network with no switches.




Simulation Results

 We consider the IEEE 118-bus system. This system has 118 nodes and 185 lines.
* The objective is assumed to be linear.
 We fix a randomly generated connected sub-graph of the system with 117 lines.
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185 continuous variables corresponding to the flow of each line.

54 continuous variables corresponding to the generation of different generators.
Lower bound on the number of ON switches: 45
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* Intel Core i7 quad-core 2.50 GHz CPU and 16GB RAM.
e Serial implementation in MATLAB using the CVX framework and Gurobi solver.
* The optimality threshold is set to 0.01.

With designed upper Without designed upper
bounds on M bounds on M/

2 min 46 min



Simulation Results
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* Linear objective.

* If cardinality lower bound is zero, < 1 sec for Gurobi to solve the problem.

* If the objective function is quadratic, Gurobi finds the optimal solution after 72 min!




Convex Model

* Existing methods are based on branch and bound, cutting plane, dynamic programming, or line
rankings.
e Goal: Find a convex model of the problem.

* Useful for convex hull pricing. [Gribik 07]
* Can be adopted to solve OTS problem for AC systems.
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Convex Model

* Existing methods are based on branch and bound, cutting plane, dynamic programming, or line
rankings.
e Goal: Find a convex model of the problem.

* Useful for convex hull pricing. [Gribik 07]
* Can be adopted to solve OTS problem for AC systems.

w 2 [XT, pT7 fT’ QT]T
___________________________________________________________________ e If the optimal W has rank-1, the
i L | relaxation is exact.
' minimize c(w) !
P weRms Trg Tty :
subject to  Mw > m, ' Bad news: SDP relaxation is almost as bad
i wg(w, —1) =0,  k=1,2,...,n5, ! asQP.
| Theorem: For generic load profiles, the
i i SDP will work with probability 0.
i minimize cr(W) ,
i WeRns+ng+nl+nb !
| WesneTreTry i+ The optimality gap is 3%-80% in IEEE test
subject to Mw > m, cases.
E Wkk:_wk:()a k:]-?zu"'anSa i
W = ww ) i+ Need to strengthen the formulation by

adding valid inequalities.
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uTw—zlzo VTW—ZQZO

@ Nonlinear constraint
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Valid Inequalities

. 4

u w—21>0 A W—22>0

Nonlinear constraint

A 4

T

u' ww v—(v 1 +u’ 29)W + 2122 > 0

@ Linearize!

\

u' Wv — (v zZ1+u zQ)w+zlz2 >0

10



Valid Inequalities

. 4

ulw—2120 viw-22>0 Based on Sherali-Adams’ RLT relaxation.

Nonlinear constraint

. 4

T

minimize cr(w, W)
weR”s"‘”g"r‘nl‘Fnb
Weg”s+”g+”l+"b
subject to Mw > m,
MWM'™ —mw ' M" —Mwm' +mm' >0,
Wkk—wk:O, k:1,2,...,ns,

W = ww .

@ Linearize!

Theorem: This relaxation is exact for large loads and/
' or small line ratings.

u' Wv — (VTZ1 + uTzQ)w + 2129 >0

u' ww v—(v z1+u 22W+2122>O !
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Simulation Results
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Simulation Results

Load factor

Load factor
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Boosting the Speed: Heuristic Rounding

 The SSDP is extremely time-consuming to solve.

* 10 min to solve IEEE 118-bus system.

* It finds the optimal objective, but not the feasible binary variables.
* We canresort to RLT with heuristic rounding.

 We consider the IEEE 118-bus system with same settings.

' Number of variables in RLT relaxation: 90,525
i » Number of constraints in RLT relaxation: 376,333

* Implementing RLT relaxation in Gurobi was extremely inefficient.
* Instead, we used MOSEK solver with CVX framework in MATLAB.

* Only 2 levels of RLT were needed in our simulations.
* Number of rounded binary variables after first round of RLT: 50/65
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Numerical Results

Performance with respect to cardinality lower
bound
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Extension to Unit Commitment

* Binary variables for generators (ON/OFF).
* Longer time-horizon.
* Ramping constraints, minimum up- and down-time constraints.
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Conclusions

e OTS problem with linear and quadratic objectives.

* Finding a good MILP formulation of OTS problem may be hard.

 The MILP formulation can be tightened if some part of the topology is fixed.
e Convex model for OTS problem with quadratic objective.

e Strong valid inequalities.

* Rounding heuristics in order to boost the running time.

e Extension to Unit Commitment problem.



Thank youl!



