

Exceptional service in the

national interest

A Scalable Solution Framework for Stochastic Transmission and Generation Planning Problems

Francisco D. Munoz Jean-Paul Watson

FERC, 2015

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

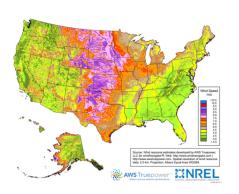
Talk Goals

- Summarize some of the challenges of large-scale transmission and generation planning.
- Overview practical (industrial) and theoretical (academic) approaches to investment planning.
- 3. Describe and illustrate the performance of the Progressive Hedging decomposition algorithm applied to the WECC 240-bus test case.

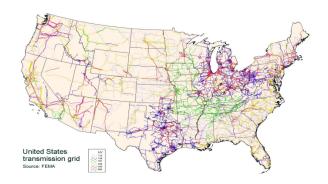
Introduction

Solar Resources (NREL)

Wind Resources (NREL)



U.S. Transmission System (FEMA)

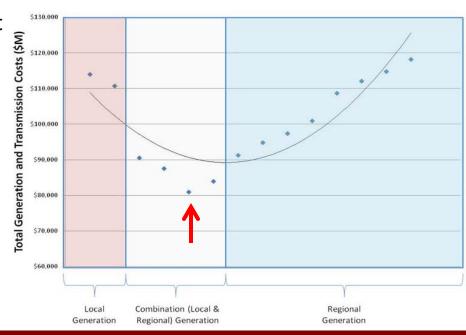


Zone Scenario Generation and Transmission Cost (MISO, 2010)

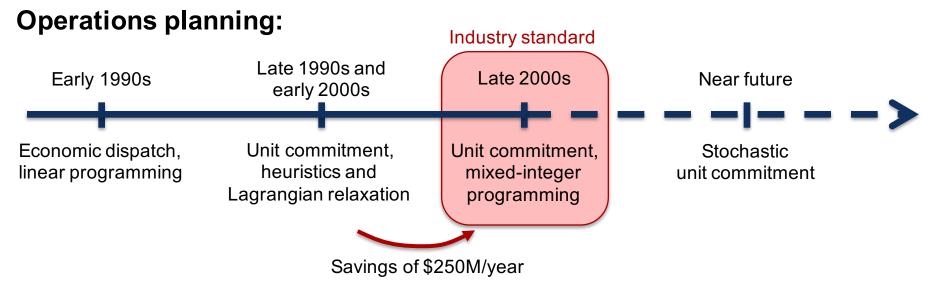
Goal:

Identify most cost effective combination of transmission and generation investments to meet:

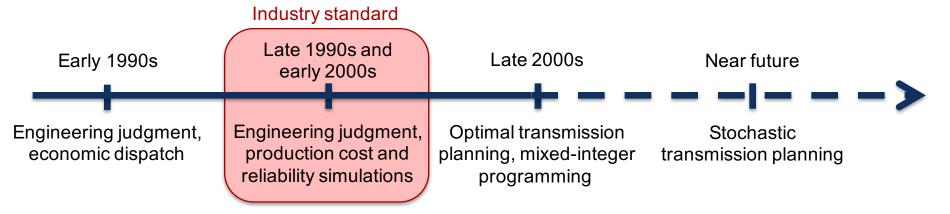
- Forecasted demand
- 2) Renewable and environmental goals



The evolution of analytical tools



Transmission planning:



Approaches used in industry

Commercial software used for transmission planning

- Simulation packages SIEMENS PSS-E
 ABB GridView optimization (O'Neill et al, 2012)
 Ventyx PROMOD
- Optimization packages PSR NXT/NetPlan Only transmission, not generation
 - PLEXOS LT Transportation network (ignores loop-flow effects)

Treatment of uncertainty and hedging strategies

"The "least regrets" approach can be summarized as evaluating a range of plausible scenarios made up of different generation portfolios, and identifying the transmission reinforcements found to be necessary in a reasonable number of those scenarios." (CAISO, 2012)

Potential regret with respect to true stochastic approach: 5-50% of total system cost (Munoz et al, 2013)

Stochastic Planning Model

Objective: minimize present worth of capital plus operation costs

Decision variables

- Transmission investments (binary)
- Generation investments (<u>continuous</u>)
- Generation dispatch
- Power flows

- Phase angles
- Load curtailment

Deterministic constraints

- Transmission build limits (max number of circuits per corridor)
- Generation build limits (max capacity per bus, renewable resource potentials)
- Installed reserves (min firm capacity per region, ELCC for renewables)
- RPS constraint (min generation from renewables, dualized, treated as soft constraint)

Scenario-dependent constraints (DC OPF)

- Supply = Demand (KCLs)
- Loop-flow constraints for existing lines (KVLs)
- Loop-flow constraints for candidate lines (disjunctive KVLs)
- Thermal limits
- Max generation limits (use hourly capacity factors from historical data for renewables)

Solution Algorithm: Progressive Hedging

Progressive Hedging (Rockafellar and Wets, 1991)

Features

- Available in the PySP (Watson et al, 2012) package of Pyomo (Hart et al, 2012)
- Converges if problem is linear, good heuristic for mixed-integer problems
- Several known techniques to accelerate convergence (Watson and Woodruff, 2011)
- New: Lower bounds to assess solution quality from Gade et al (2013) or Munoz et al (2014)

Experience from large-scale stochastic unit commitment problems (ARPA-E)

ISO NE and 100 scenarios:

Extensive form on CPLEX

No feasible solution after 1 day of CPU time

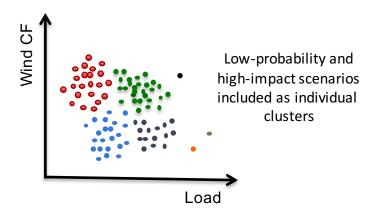
Progressive Hedging

30 iterations / 20 min to attain 2% optimality gap

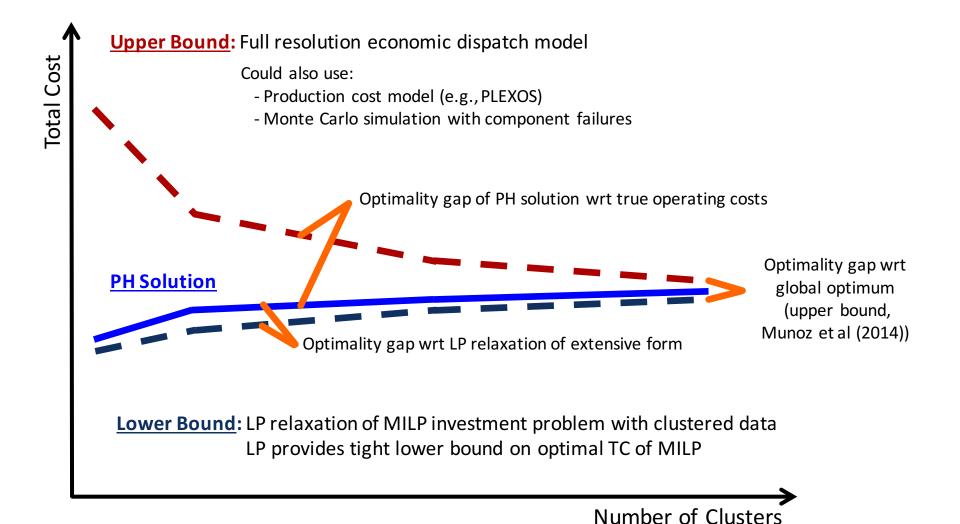
Scenario Reduction Framework

k-means clustering

- Group similar hours with similar loads, wind, solar, and hydro levels.
- Reduced problem provides a lower bound on optima total system cost since all stochastic parameters are on RHS of constraints (Munoz et al, 2014). The more clusters, the tighter the lower bound.



Assessing Solution Quality



Test Case: WECC 240-bus System

WECC 240-bus system:

(Price & Goodin, 2011)

140 Generators (200 GW)

448 Transmission elements

21 Demand regions

28 Flowgates

Renewables data (Time series, GIS) (NREL, WREZ, RETI)

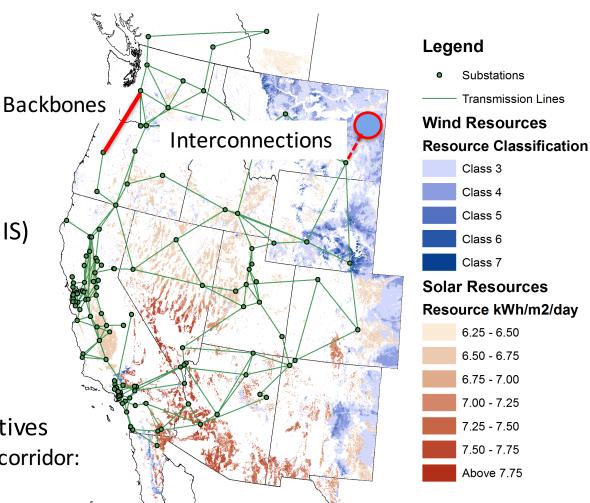
- 54 Wind profiles
- 29 Solar profiles
- 31 Renewable Hubs (WREZ)

Candidate Transmission Alternatives

Maximum number of circuits per corridor:

2 for Backbones

4 for Interconnections to Renewable Hubs



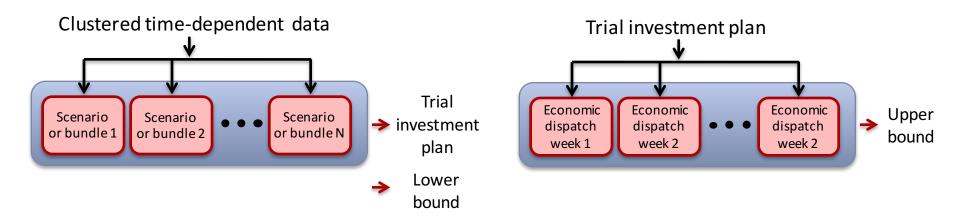
Experiments

Description

- Dataset of 8,736 historical observations of load, wind, solar, and hydro levels for year 2004
 - Results in ~15M variables and ~35M constraints
- 257 generation investment variables (continuous)
- 339 variables for transmission backbones (binary)
- 31 variables for interconnections to renewable hubs (integer)

Our Hardware Environments

- Red Sky/Red Mesa HPC: 43,440 cores of Intel Xeon series processors, 64TB of RAM (12 GB per node)
- Multi-Core SMP Workstation: 48-core Intel Xeon, 2.3 GHz, 512 GB RAM (~\$20K)



Computational Performance

Extensive form, 100 scenarios

CPLEX, no feasible solution after 1 day on a 48-core workstation

Progressive Hedging, 100 scenarios

- Red Mesa: ~15 minutes, 186 iterations until full convergence of investment variables
- Workstation: ~31 minutes, 180 iterations until full convergence of investment variables

```
(1) UB from investment cost PH + true operating cost : $582.7B

(2) Expected cost from PH : $565.7B

(3) LB from solving extensive form of LP : $555.4B
```

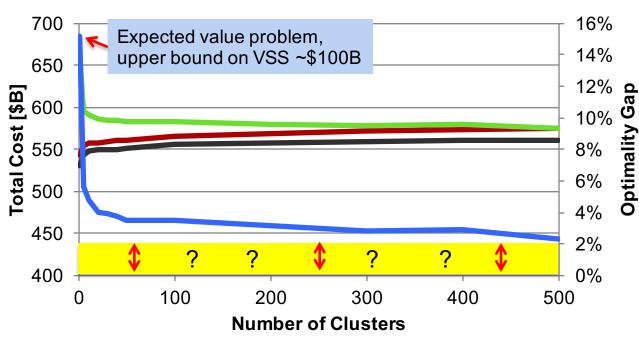
```
Gap LP => How suboptimal is the solution found using PH w.r.t. LP relaxation (not zero!!)

Gap UB => Difference between operating costs using clustered vs. full dataset
```

Total Gap => 3.5% (w.r.t. best lower bound)

Computational Performance

Convergence of upper and lower bounds



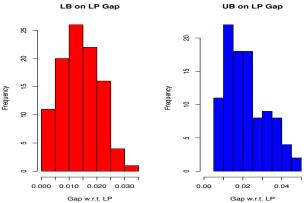
Total Cost PH
Lower Bound
Upper Bound
Gap

500-scenario problem

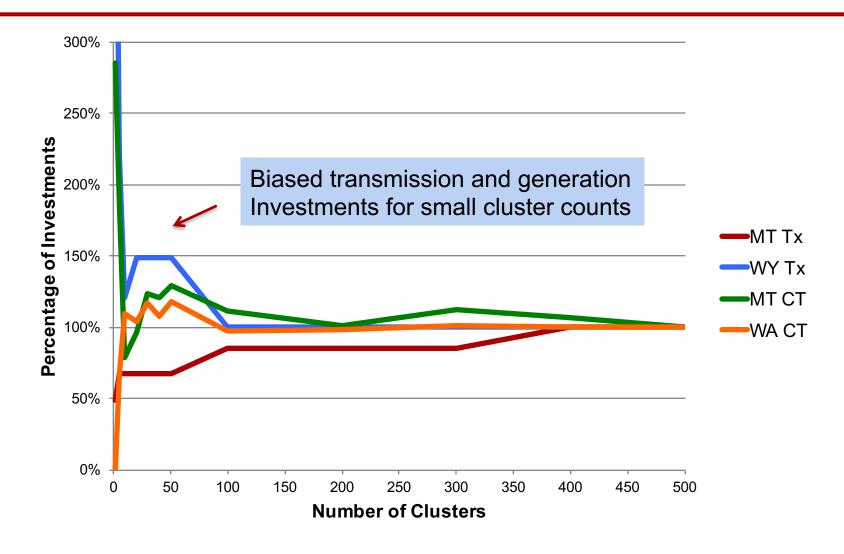
- Red Mesa HPC: 1.9 hrs.
- Workstation : 8.7 hrs.

LP relaxation vs optimal solution from MILP:

- Solved 100 single-scenario problems, 0.5% gap and 1hr time limit
- MILP lower bound w.r.t. LP relaxation is 1.4% (average)
- MILP upper bound w.r.t. LP relaxation is 2.2% (average)



Investments vs. time granularity



Summary

- Stochastic transmission and generation planning on large-scale systems can be used to:
 - a) Capture the true economic value of time-dependent resources
 - b) Model different weather scenarios
 - c) Explicitly represent long-term policy and economic uncertainties
- Commercially available software does not capture a), b) or c) due to both modeling and algorithmic limitations
- Progressive Hedging coupled with our scenario reduction framework can be used to solve large-scale problems in commodity workstations, not just supercomputers!
- F. D. Munoz and J-. P. Watson, "A Scalable Solution Framework for Stochastic Transmission and Generation Planning Problems." **Computational Management Science**, 2015.
- O. Ozdemir, F. D. Munoz, J. Ho, and B. F. Hobbs, "Economic Analysis of Transmission with Demand Response and Quadratic Losses: A Successive LP Approach." **IEEE Transactions on Power Systems**, 2015.
- F. D. Munoz, J-. P. Watson, and B. F. Hobbs, "Optimizing Your Options: Extracting the Full Economic Value of Transmission When Planning Under Uncertainty." The Electricity Journal, 2015.

Relevant References

- Akbari, T., Rahimikian, A., and Kazemi A. (2011), "A multi-stage stochastic transmission expansion planning method." Energy Conversion Management, 52, pp. 2844–2853.
- Bahiense, L., Oliveira, G., Pereira, M., and Granville, S. (2001). "A mixed integer disjunctive model for transmission network expansion," IEEE Transactions on Power Systems, 16 (3), pp. 560–565.
- Binato, S., Pereira, M. V. F., and Granville, S. (2001). "A new Benders decomposition approach to solve power transmission network design problems. "IEEE Transactions on Power Systems, *16*(2), 235-240.
- Birge, J. and F. Louveaux (1997). Introduction to Stochastic Programming, Springer.
- CAISO, "2011-2012 Transmission Plan," California ISO, March 2012. http://www.caiso.com
- Gade, D., Hackebeil, G., Ryan, S., Watson, J-. P., Wets, R., and Woodruff, D. (2013). "Obtaining Lower Bounds from the Progressive Hedging Algorithm for Stochastic Mixed-Integer Programs." Under review.
- Hart W.E., Watson J.P., Woodruff D.L (2011). "Python optimization modeling objects (Pyomo)." Mathematical Programing Computation 3, 219–260.
- Price, J. E. and Goodin, J. (2011), "Reduced Network Modeling of WECC as a Market Design Prototype, IEEE Power Engineering Society General Meeting, July.
- MISO, "Regional Generation Outlet Study," Midwest ISO, November 2010. http://www.midwestiso.org
- Munoz, F. D., Hobbs, B. F., and Watson, J-. P. (2014). "New Bounding and Decomposition Approaches for MILP Investment Problems: Multi-Area Transmission and Generation Planning Under Policy Constraints," JHU Working Paper (under review).
- Park, H. and R. Baldick (2013). "Transmission Planning Under Uncertainties of Wind and Load: Sequential Approximation Approach." IEEE Transactions on Power Systems, **PP**(99): 1-8.
- O'Neill, R. P., Krall, E. A., Hedman, K. W., and S. S. Oren (2012), "A model and approach for optimal power systems planning and investment," Mathematical Programming.
- Oliveira, G. C., A. P. C. Costa, and S. Binato (1995). "Large scale transmission network planning using optimization and heuristic techniques." IEEE Transactions on Power Systems, 10 (4), pp. 1828-1834.
- Reis, Francisco S., P. M. S. Carvalho, and L. A. F. M. Ferreira (2005). "Reinforcement scheduling convergence in power systems transmission planning." IEEE Transactions on Power Systems, 20 (2), pp. 1151-1157.
- Roh, J. H., Shahidehpour, M., and Wu, L. (2009), "Market-based generation and transmission planning with uncertainties." IEEE Transactions on Power Systems, 24 (3), pp. 1587–1598.
- Rockafellar R.T., Wets R.J.-B. (1991). "Scenarios and policy aggregation in optimization under uncertainty." Math. Oper. Res. 16(1), 119–147.
- Watson J.P. and Woodruff D.L. (2011). "Progressive hedging innovations for a class of stochastic mixed-integer resource allocation problems." Computational Management Science 8(4), 355–370.
- Watson, Jean-Paul, David L. Woodruff, and William E. Hart (2012). "PySP: modeling and solving stochastic programs in Python." Mathematical Programming Computation 4.2, pp. 109-149.

E-mail: fdmunoz@sandia.gov