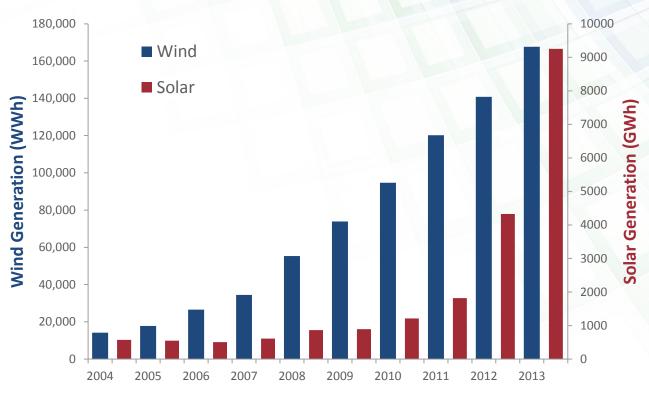


Electricity Market Solutions for Generator Revenue Sufficiency with Increased Variable Generation


Todd Levin and Audun Botterud FERC June Technical Conference 6/23/15

Motivation

There is a rapid shift towards more renewable resources in the U.S. power grid

- State and federal incentives
 - 38 states with RPS or RPG
- U.S. wind capacity: 65 GW
- U.S. solar capacity: 20 GW

Characteristics of Renewables

1. Variability and uncertainty

Increased reserve requirements

2. Zero marginal cost of generation

Reduction in LMPs/wholesale electricity prices

Generators lose revenue

Research Questions

- 1. How will wind power affect prices of energy and reserves?
- 2. What are implications for revenue sufficiency?
- 3. Are new market designs needed to ensure resource adequacy?

Approach

- Model three different market polices to value reserves, energy and capacity
 - 1) Operating Reserves Demand Curve
 - ERCOT
 - 2) Fixed Reserves Scarcity Pricing
 - Used in most U.S. markets
 - We assume:
 - \$100/MW-h spin-up
 - \$500/MW-h total reserve

3) Capacity Payments

- \$40/kW-year
- No reserve scarcity pricing

Approach

Case study application to "ERCOT" system

- 4 thermal unit types (Nuclear, Coal, NGCC, NGCT)
- 2013 ERCOT wind and load profile
- 2024 total load projection (15% growth)
- Wind varies from 10% to 40% of total demand

Cost Minimizing MIP

- Unit expansion
- Commitment
- Generation/Reserves
- Integer unit representation
- 8760 hourly periods

Sensitivities

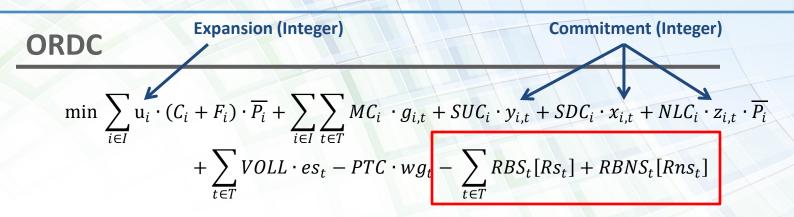
- No PTC
- No Wind Reserves
- High Natural Gas Prices

Parameter	Value
Peak Load (MW)	77,471
Existing Generation Capacity (MW)	73,380
Nuclear	4,400
Coal	19,500
NGCC	43,600
NGCT	5,880
Maximum Wind Resource Capacity Factor	33.0%

Parameter	Nuclear	Coal	NGCC	NGCT	Wind
Capacity (MW)	2,200	1,300	400	210	
Max. Output (MW)	2,046	1,214	378	202	-
Min. Output (MW)	2,046	520	160	84	-
Overnight Cost (\$/kW)	5,501	2,925	1,021	673	1,630
Fixed OM (\$/kW)	93.28	31.18	15.37	7.04	39.55
Annualized Fixed and Investment Cost (\$/MW)	373,595	297,416	78,186	51,537	164,371
Var OM (\$/MWh)	2.14	4.47	3.27	10.37	-
Heat Rate (btu/kWh)	10,464	8,740	6,333	10,450	-
Fuel Cost (\$/MMbtu)	0.50	2.34	4.96	9.60	-
Marginal Generation Cost (\$/MWh)	7.37	23.80	30.64	55.00	-
No Load Cost (\$/MW)	-	1.10	4.78	8.86	-
Max Spinning-up Reserve (% of Max. Output)	-	20%	50%	80%	-
Ramp Up Limit (% of Max. Output/hr)	-	35%	50%	100%	-
Ramp Down Limit (% of Max. Output/hr)	-	35%	50%	100%	-
Start-Up Cost (\$/MW)	-	131.35	61.80	40.60	-
Shut-Down Cost (\$/MW)	-	1.31	0.62	0.41	-
Forced Outage Rate	7.0%	6.6%	7.7%	7.7%	-

ERCOT ORDC

ORDC derived from recent ERCOT implementation


-24 distinct PWL curves for month/hour pairs

3500 3500 Winter 23:00
3:00
7:00
11:00
15:00
19:00 Spring Spin Reserves Price Adder (\$/MW) Spin Reserves Price Adder (\$/MW) Season For Hours μ σ 1-2 and 23-24 185.14 1217.89 2500 2500 3-6 76.28 1253.93 7-10 136.32 1434.64 Winter (Month 12, 1, 2) 11-14 -218.26 1441.00 1500 1500 15-18 -53.67 1349.52 19-22 -183.00 1129.31 1-2 and 23-24 245.76 1174.61 500 500 3-6 460.41 1313.46 7-10 348.16 1292.36 Spring 0 0 (Month 3,4,5) 11-14 1332.05 -491.91 2000 3000 4000 5000 6000 2000 3000 4000 5000 6000 15-18 -253.77 1382.60 + VOLL Spin Reserves (MW) Spin Reserves (MW) 19-22 1280.47 -436.09 3500 3500 Summer Fall 1-2 and 23-24 374.88 1503.97 Spin Reserves Price Adder (\$/MW) Spin Reserves Price Adder (\$/MW) 3-6 1044.81 1252.25 7-10 1679.70 339.01 Summer 2500 2500 (Month 6,7,8) 11-14 -695.94 1251.05 15-18 -270.54 1284.96 19-22 -730.33 1331.49 1500 1500 1-2 and 23-24 1044.88 15.90 3-6 478.97 1014.02 7-10 322.65 1036.07 Fall 500 500 (Month 9, 10,11) 11-14 -473.16 1293.83 15-18 -422.21 1246.49 19-22 -177.76 1231.14 2000 2000 3000 4000 5000 6000 3000 4000 5000 6000 Spin Reserves (MW) Spin Reserves (MW) 1

$$P_{ns} = 0.5 \cdot (VOLL - \lambda) \cdot \left(1 - CDF(\mu_{h,m,w}, \sigma_{h,m,w}, rs + rns - X)\right)$$
$$P_{s} = P_{ns} + 0.5 \cdot max(VOLL - \lambda, 0) \cdot \left(1 - CDF\left(\frac{\mu_{h,m,w}}{2}, \frac{\sigma_{h,m,w}}{\sqrt{2}}, rs - X\right)\right)$$

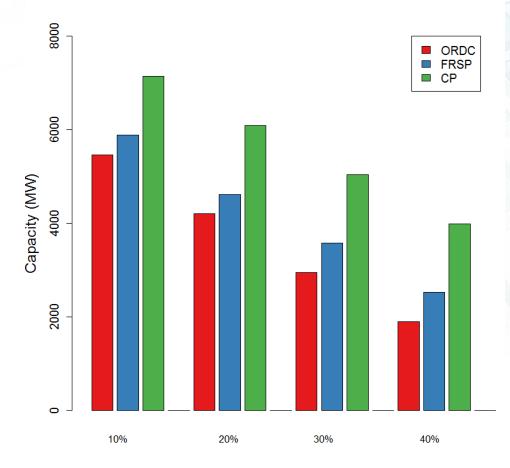
Table 1 LOLP distributions by season and time-of-day block for 2011 and 2012

Formulation

FRSP/CP

$$\min \sum_{i \in I} u_i \cdot (C_i + F_i - CP) \overline{P_i} + \sum_{i \in I} \sum_{t \in T} MC_i \cdot g_{i,t} + SUC_i \cdot y_{i,t} + SDC_i \cdot x_{i,t} + NLC_i \cdot z_{i,t} \cdot \overline{P_i} \\ + \sum_{t \in T} ESC \cdot es_t + SRSC \cdot srs_t + NRSC \cdot nrs_t \\ \sum_{i \in I} rs_{i,t} + wr_t + rss_t = RRs_t \forall t \in T \\ \sum_{i \in I} (rs_{i,t} + rns_{i,t}) + wr_t + rnss_t = RRs_t + RRns_t \forall t \in T \\ \sum_{i \in I} (rs_{i,t} + rns_{i,t}) + wr_t + rnss_t = RRs_t + RRns_t \forall t \in T \\ \sum_{i \in I} (rs_{i,t} + rns_{i,t}) + wr_t + rnss_t = RRs_t + RRns_t \forall t \in T \\ \sum_{i \in I} (rs_{i,t} + rns_{i,t}) + wr_t + rnss_t = RRs_t + RRns_t \forall t \in T \\ \sum_{i \in I} (rs_{i,t} + rns_{i,t}) + wr_t + rnss_t = RRs_t + RRns_t \forall t \in T \\ \sum_{i \in I} (rs_{i,t} + rns_{i,t}) + wr_t + rnss_t = RRs_t + RRns_t \forall t \in T \\ \sum_{i \in I} (rs_{i,t} + rns_{i,t}) + wr_t + rnss_t = RRs_t + RRns_t \forall t \in T \\ \sum_{i \in I} (rs_{i,t} + rns_{i,t}) + wr_t + rnss_t = RRs_t + RRns_t \forall t \in T \\ \sum_{i \in I} (rs_{i,t} + rns_{i,t}) + wr_t + rnss_t = RRs_t + RRns_t \forall t \in T \\ \sum_{i \in I} (rs_{i,t} + rns_{i,t}) + wr_t + rnss_t = RRs_t + RRns_t \forall t \in T \\ \sum_{i \in I} (rs_{i,t} + rns_{i,t}) + wr_t + rnss_t = RRs_t + RRns_t \forall t \in T \\ \sum_{i \in I} (rs_{i,t} + rns_{i,t}) + wr_t + rnss_t = RRs_t + RRns_t \forall t \in T \\ \sum_{i \in I} (rs_{i,t} + rns_{i,t}) + wr_t + rnss_t = RRs_t + RRns_t \forall t \in T \\ \sum_{i \in I} (rs_{i,t} + rns_{i,t}) + wr_t + rnss_t = RRs_t + RRns_t \forall t \in T \\ \sum_{i \in I} (rs_{i,t} + rns_{i,t}) + wr_t + rnss_t = RRs_t + RRns_t \forall t \in T \\ \sum_{i \in I} (rs_{i,t} + rns_{i,t}) + wr_t + rnss_t = RRs_t + RRns_t \forall t \in T \\ \sum_{i \in I} (rs_{i,t} + rns_{i,t}) + wr_t + rnss_t = RRs_t + RRns_t \forall t \in T \\ \sum_{i \in I} (rs_{i,t} + rns_{i,t}) + wr_t + rnss_t = RRs_t + RRns_t \forall t \in T \\ \sum_{i \in I} (rs_{i,t} + rns_{i,t}) + wr_t + rnss_t = RRs_t + RRns_t \forall t \in T \\ \sum_{i \in I} (rs_{i,t} + rns_{i,t}) + wr_t + rnss_t = RRs_t + RRns_t \forall t \in T \\ \sum_{i \in I} (rs_{i,t} + rns_{i,t}) + wr_t + rnss_t = RRs_t + RRns_t \forall t \in T \\ \sum_{i \in I} (rs_{i,t} + rns_{i,t}) + wr_t + rnss_t = RRs_t + RRns_t \forall t \in T \\ \sum_{i \in I} (rs_{i,t} + rns_{i,t}) + wr_t + rnss_t = RRs_t + RRns_t \forall t \in T \\ \sum_{i \in I} (rs_{i,t} + rnss_{i,t}) + wr_t + rn$$

Formulation


Load Balance	Reserves
$\sum_{i \in I} g_{i,t} + wg_t + es_t = D_t LMP$	$rs_{i,t} \leq z_i \cdot \overline{P_i} \cdot SPR_i \qquad \forall \ i \in I, s \in S, t \in T$
	$rns_{i,t} \leq (u_i - z_i) \cdot \overline{P_i} \cdot NSR_i \forall i \in I, s \in S, t \in T$
Thermal Output	Wind Balance
$g_{i,t} + rs_{i,t} \leq z_{i,t} \cdot \overline{O_i} \forall i \in I, t \in T$	$wg_t + wr_t + wc_t = W_t \forall t \in T$
$g_{i,t} \geq z_{i,t} \cdot \underline{O_i} \forall i \in I, t \in T$	
Ramping	Unit Commitment
$g_{i,t} \le g_{i,t-1} + z_{i,t} \cdot RU_i \qquad \forall i \in I, t \in T \neq 1$	$z_{i,t} = z_{i,t-1} + y_{i,t} - x_{i,t} \forall \ i \in I, t \in T \neq 1$
$g_{i,t} \ge g_{i,t-1} - z_{i,t-1} \cdot RD_i \qquad \forall i \in I, t \in T \neq 1$	$z_{i,t} \leq u_i \forall \ i \in I, t \in T$
	$x_{i,t}, y_{i,t}, z_{i,t} \ge 0 \forall i \in I, t \in T$

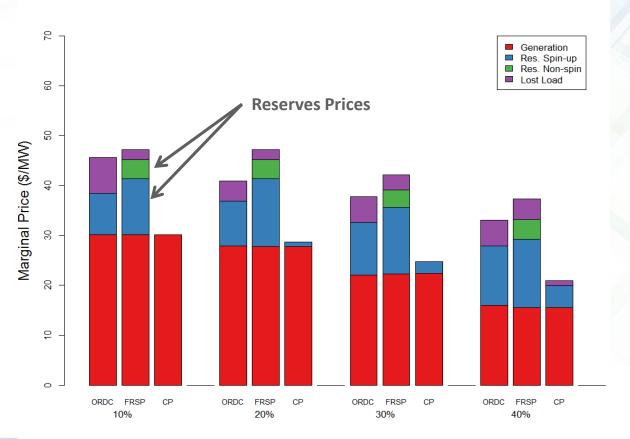
- Integer variables for expansion and commitment
- Significant reduction in computation time (up to 5000x*)
- Enables solving for full year of operations (8760 hourly periods)

* B. Palmintier and M. Webster, "Impact of unit commitment constraints on generation expansion planning with renewables," in 2011 IEEE Power and Energy Society General Meeting, 2011, pp. 1–7.

Results: Capacity Expansion

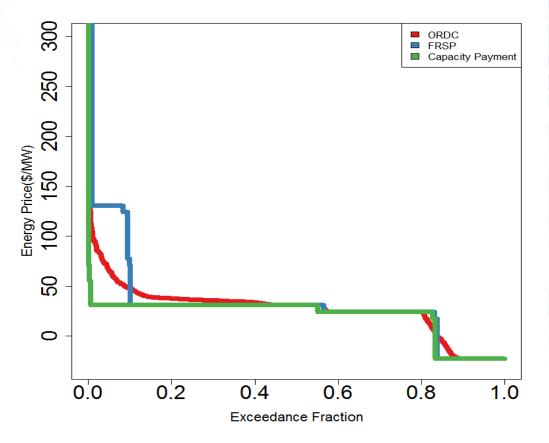
- Only new NGCT capacity is developed
 - CP results in most new capacity
 - ORDC and FRSP are comparable

Results: Prices

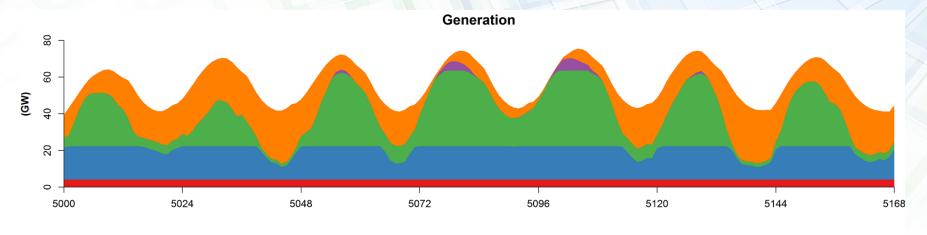

Prices drop with increasing wind

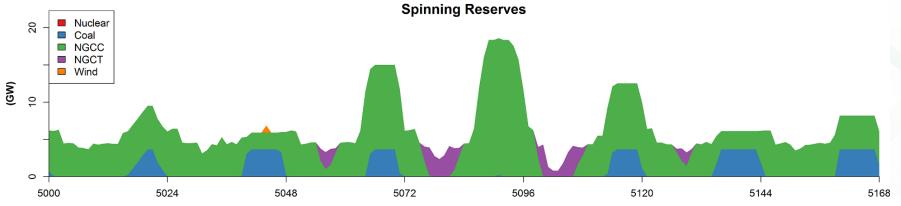
ORDC > CP

- CP has no reserves pricing mechanism
 - Lower prices
- Extra capacity developed
 - Essentially no lost load

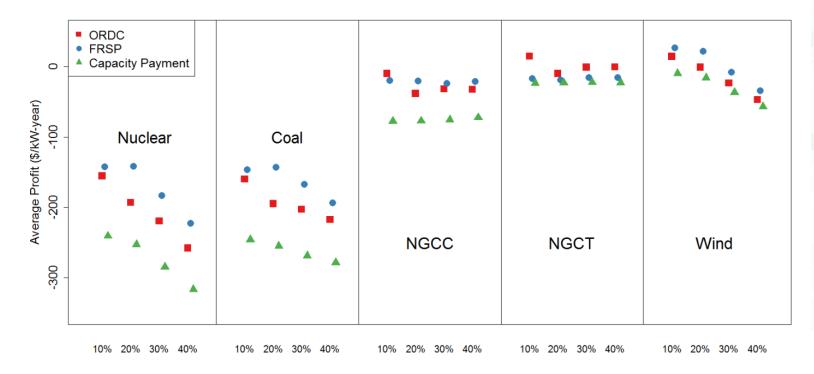

FRSP > ORDC

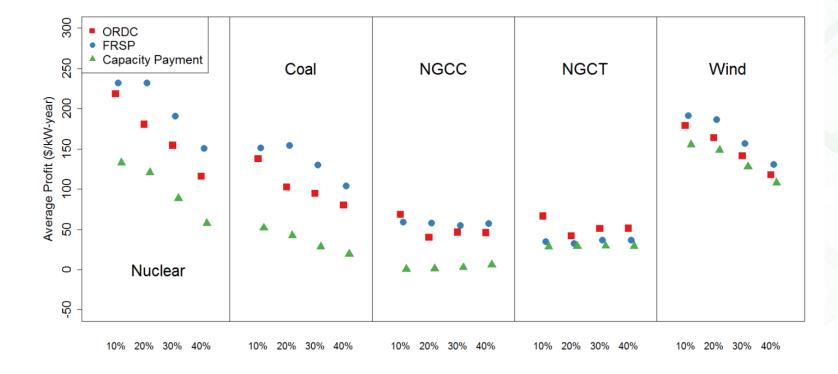
- Higher reserve prices
 - Scarcity price spikes
 - Mostly non-spin
- Less frequent lost load
 - Few hours = large price impact


Results: Exceedance Curve

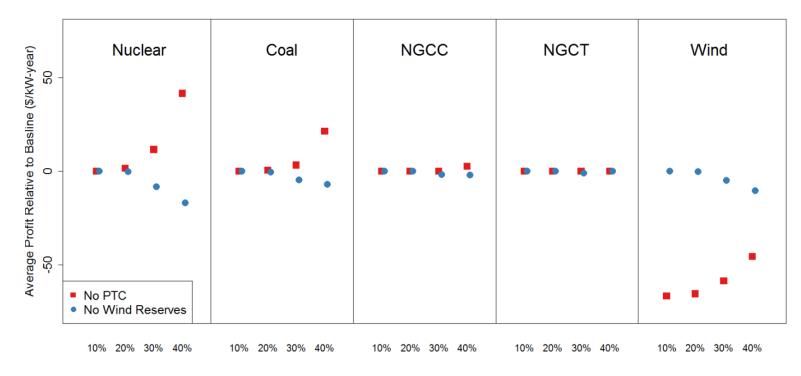

- For full 8760 hour year
- ORDC -> More continuous price spectrum

Hourly Generation and Reserves

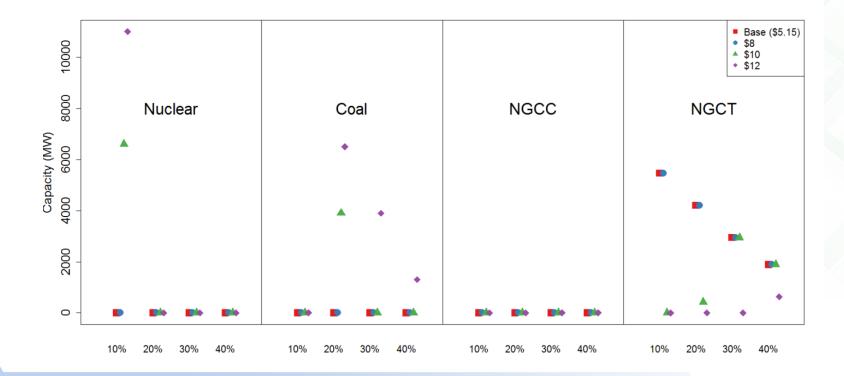

- Summer week with 40% wind penetration
- High wind and spinning reserves at night


Results: Generator Profits

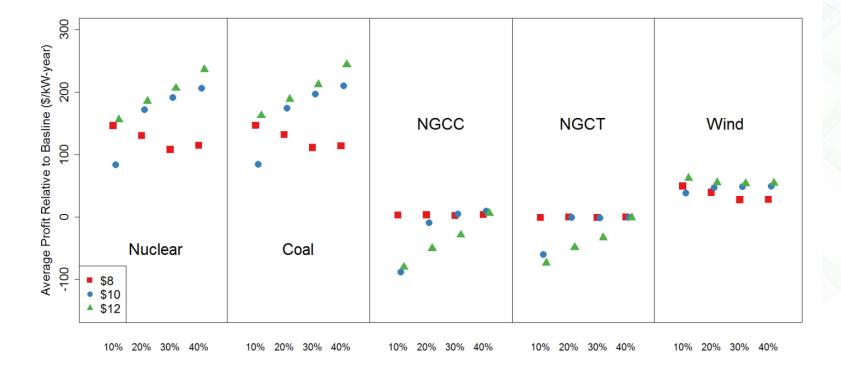
- Nuclear, Coal and Wind profits decrease with increasing wind
 - More exposed to lower off-peak prices
- Gas units receive additional revenues from providing reserves
- \$40/kW-year capacity payments provide less revenue than ORDC/FRSP
 - Assumption that there is no reserve scarcity pricing


Results: Generator Profits w/o Capital Costs

Most units are profitable without capital costs


Results: Policy Sensitivity

- Eliminating the PTC
 - Raises energy prices and baseload revenues
 - Reduces wind profits
- No wind reserves
 - More gas capacity is kept for reserves
 - Baseload units provide the marginal unit more often


Results: NG Price Sensitivity

- \$10/MMbtu New nuclear is developed for 10% and 20% wind
- \$12/MMbtu New coal is developed up to 40% wind
- NGCC is still never developed, NGCT expansion decreases

Results: NG Price Sensitivity

- Higher NG prices increase energy prices and wind/baseload profits
- When wind penetration is high, NGCC and NGCT profits are relatively unchanged
 - Increased revenue streams from reserves products

Conclusions

How will wind power affect prices of energy and reserves?

- Energy prices decrease
- Reserves prices increase

What are implications for revenue sufficiency?

- Revenues decrease for nuclear, coal and wind units with more wind
- Natural gas units are less impacted
 - Increased revenues from reserves
- ORDC and FRSP can be structured to provide similar revenues
 - ORDC has advantage of less variable prices, fewer large spikes, less risk to investors
- \$40/kW-year capacity payments
 - Less revenue but more capacity
- Low natural gas prices contribute to baseload revenue sufficiency issues

Are new market designs needed to ensure resource adequacy?

- Our analysis ensures resource adequacy through system cost-minimization
- Without long term revenue sufficiency, there likely will not be resource adequacy
- Alternative solutions
 - Hybrid CP/ORDC model

Todd Levin Energy Systems Engineer Argonne National Laboratory tlevin@anl.gov

