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Method: JHSMINE (Johns Hopkins
Stochastic Multi-stage Integrated

Network Expansion)

Stage 2014: ftage 2024-; Stage 2014: Uncert.ainty
”Today’s Tomorrow’s ”Today's (Multlple
Choices” Choices” Choices” Study Cases)
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Choose Yr 10 Choose Yr 20 Choose Yr 10 Scenarios of .
Investments in: Investments in investments in: * SFuels
» Transmission trans / gen e Transmission » Load growth
* Generation Operations * Generation * Technology
e Policies :

Deterministic Approach:
One model for each study case

Stage 2024:
“Tomorrow’s
Choices”

Choose Yr 20
investments in
trans / gen
Operations

JHSMINE: Solve all cases at once in one model .

JHSMINE Structure: Mixed Integer

linear program

Optimize the objective:
Minimize (probability-weighted, present worth) of cost over
40 yrs

By choosing values of decision variables:

— Transmission investment (0-1)
* 10 yr “portal” (optional) lines (in addition to Common Case lines)
e 20yrlines
* Gen investment (co-optimized)
— Gen dispatch
Respecting constraints:
— Kirchhoff’s laws (linear OPF)
* Load by hour
— Generator operating constraints
* Variable renewable availability by hour
— RPS
— Siting restrictions
Accounting for uncertainties:
— load/renewable conditions (hourly variability)

— IN STOCHASTIC MODEL: long-run study cases




Mathematical structure

“Today’s Uncertainty “Tomorrow’s
Choices”
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JHSMINE cooptimizes transmission

and generation

“ . . . ” Energy Mix (1.04 Billion MWh, Year 2024, 21-Zone Model)
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Two versions of JHSMINE-WECC

21 TEPPC Zone “Pipes-&- 300 bus network: Both Linearized DC
Bubbles” OPF & “Pipes-&-Bubbles” versions

Preserve WECC
paths between
regions

244 preserved
monitored lines

282 equivalenced
unmonitored
lines

26 hubs for new
thermal plants
WREZs for
renewable
development
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Question 1: What can we learn from
stochastic transmission planning ?

Q1.1 What transmission expansion best balances: e —

value of tomorrow’s flexibility

Vs.
today’s investment costs?
.... Recognizing how generation siting, operations react
(“anticipative planning”/”cooptimization”)
Q1.2 Are those plans different, and cheaper on
average, than traditional deterministic plans?

Q1.3 Are any high-value lines identified by
stochastic programming that are missed by
deterministic planning?

* Which add flexibility, optionality to system
Q1.4 Are stochastic plans more robust against

scenarios not considered?




Alternative Study Case/Scenario Sets:

1,5, and 20

Base Case

Stochastic (5)

— Study Case 1: Econ Recovery
Study Case 2: Clean Energy
\ Study Case 3: Short-term Consumer Costs

Study Case 4: Long-term Societal Costs
Base Case
2013 Study Cases (4)

Deterministic

Base Case

Stochastic (20,

» Three groups of uncertain
parameters (24 parameters):

— P-Carbon, P-Gas, Energy

growth
— RPS, Renewable capital cost

— Peak growth, storage

Technical Advisory Cases (9)

Example: Optimal “Portal” 10 yr

Transmission (21 Zone model)

Heuristically combine
under 5 (and also 20)

Stochastic Optimum

Optimal under just Base
Case (100% probability)  deterministic results:
Optimal in >3 of 52013

Stu_dy Case models_

study cases (equal
chance of each scenario)

Stochast/c
line not
chosen in
any study &

case &

/ A | g

MNaive >=3 , 5 Case Stochastic' ,
e

Base Case /

Expected PW cost under 20% chance of each of 5 study cases
$680.3B $678.5B (optimal)

10

$681.4B




Example: Optimal “Portal” 10 yr Trans (21
Zone) for Heuristics that Combine

Deterministic Study Case Results

Optimalin all 52013
Study Case models

Nalves>=5§ /

Optimal in >3 of 52013
Study Case models

/]

Maive >=3 Vé

;

Optimal in >1 of 5 2013
Study Case models

Naive>=1
—

Expected PW cost penalty under 20% chance of each of study cases:

$5.2B

$1.9B

S$3.2B 4

Comparison of Yr 10 Lines Under

Alternative Scenario Sets (300 bus case)

Optimal under Base
Case

Deterministic Base Case

Optimal under 5
Scenarios (20%

~ Probability Each)
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Five Case Stochastic

Optimal under 20
Scenario Case (5%
Probability each)
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20 Case Stochastic Equal Probability

Expected suboptimality cost penalty under 5% chance of each of 20 scenarios: -

$14.2B

$2.0B

SOB Optimal




Does a stochastic solution based on the
“wrong” scenarios do better against

other scenarios?

40
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Cost Difference Relative to Stechastic (5)
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* The stochastic (5) plan does better in 10/15 of the unconsidered scenarios
* Not necessarily the case; but stochastic plans tend to build more in more pllagces

Question 2: Practical to Optimize Economic

Planning of Regional Transmission?

— Yes: Can rapidly screen, define, and assess
performance of alternative plans

— After initial model set-up, ~0.5-2 hours to
optimize a single stochastic WECC plan for a
particular set of assumptions (single server)

- If multiple servers, can quickly generate &
evaluate many plans under various:
* study cases (climate, regulations, technology...)
* objectives (least-cost, least-emissions, least land use,...)
— Far faster than manual assembly &
evaluation of plans

— You should always subject plans to detailed
production costing!




What problem sizes are practical to

solve?

» If Kirchhoff's voltage law enforced (DC OPF), 1 hr solution time
on a workstation with a 0.5% optimality gap 2>

~100 candidate lines
~100,000 combinations of:
Generation types
X Buses/zones
X Sample hours (load/renewable output)
X Decision stages (in-service dates)
X Long run regulatory/economic/technology study cases
—>Tradeoffs! (more detail on one aspect = less on another)
» Pipes-&-bubbles model
~100 candidate lines
~2,000,000 combinations
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Problem size examples solved here

» Pipes-&-bubbles:
8 Generation types
X 21 TEPPC zones
X 20 Sample hours (load/renewable output)
X 2 Decision stages (2024, 2034)
X 20 Long run regulatory/econ/tech scenarios

» KVL (DC OPF):
10 Generation types
X 300 Buses
X 6 Sample hours (load/renewable output)
X 2 Decision stages (2024, 2034)
X 3 Long run regulatory/econ/tech scenarios 10




Question 3: What affects

transmission decisions?

» What strongly matters?

* More lines recommended if:
0 Consider several study cases/scenarios at once (cf. 1 study case at a time)
0 Consider KVL (parallel flows)

* Considering a range of load/renewable operating conditions
* Considering KVL (parallel flows) = more lines
* Unit commitment, if significant coal generation (low C cost)

> What matters less?

* Going from 5 to 20 study cases/scenarios
0 No difference in 21 zone case, differences in 300

* Precise probabilities of study cases/scenarios

* Unit commitment, if low coal penetration

* Consideration of “failure to launch” for planned lines—few
additional lines are justified in Yr 10 as “insurance”
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Question 4: What is the value of
cooptimization? (“Anticipatory

Planning”)

Compare Three Approaches

Traditional Iterative Simultaneous

Planning

Cooptimization

Cooptimization

Generation Planning

Optimize Generation

Generation
Siting/Mix

Scenario

Generation
Scenario

Transmission Planning

Optimize Trans

Optimize Generation &
Transmission Investment
Together

Transmission
Expansion

Transmission
Plan

Optimize Generation

Generation
Scenario

Optimize Trans

Transmission
Expansion

E Etc.

Transmission Plan

& Consistent
Generation
Siting/Mix
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Eastern Interconnection Case Study:
Comparison of Three Approaches

(Johnson et al. 2015)
' JHU Model (M.L.L.P.): JHSMINE

e 27 El regions
* Pipes & Bubbles

* 20 years of annual transmission & generation

investment
3,040
<— Gen-First with Existing E.I. Grid
3,020
3,000 — E.l. Phase | CO2+
* ®—® “Hardened Transmission Case”
2,980 -
= Trgns-Optimization 2% Savings (~ New Transmission Investment)

ur 2,960 With Gen-First Mix

Iterative Cooptimization

R Simultaneous Cooptimization

2,920
0 2 4 6 8

Objective function 2010 NPV (2010 bn
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Iterations

US-Wide Hypothetical Example
(Liu et al., 2013)

JHSMINE Model: a
* 13 US regions e SZGB{/S4SB trd

* Build & dispatch gen; build transmission

Results:
1. Gen-Only (with existing grid): $1846B PW

¥'4. Co-op Simultaneous: $1679B

v~ S73B/544B trans

2. Trans-Only (with Gen-Only generation): $1766B
. ES‘,193/$3_5_3_ trans investment 2010-20/20-30

n
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Conclusions

: Stochastic plans are different & likely better
Q2: Stochastic planning is practical

Q3: Other approximations can be important as
assuming certainty

Q4: “Anticipatory planning” (cooptimization)
captures not only fuel cost savings, but
generation capital cost savings

Next:
* detailed regional study for BPA

* Improved decompostion methods for
solving huge problems
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