

Enhanced Combined Cycle Modeling

from bid to bill2018.06.26

Congcong Wang, Gary Rosenwald, Kevin Vannoy, Chuck Hanson, Yonghong Chen and Jason Howard

Purpose

Discuss Conceptual Design of MISO
 Enhanced Combined Cycle (ECC) Model

Key Takeaways

- Recent market system performance improvement enabled enhanced modeling with estimated benefits of \$14~\$34 million
- The ECC model allows market participants to offer more accurately and MISO to access greater flexibility of the resources
- Revamped pricing and Make Whole
 Payments align with market clearing to incentivize effective dispatch following

Participant interests in ECC model since 2011 were enabled by recent computation advancements

Increasing needs of ECC

- MISO currently hosts 44
 Combined Cycle Gas Turbine (CCGT or Combined Cycle) resources with more under development
- Simplified modeling options either as a single aggregate resource or as individual units have been used since market inception

Recent computation enabler

- Market participants have shown great interests but unit commitment (SCUC) problem could not be solved within acceptable time
- Recent advances in SCUC problem formulation and solver performance show acceptable solve time and multi-million \$ annual benefits

ECC model represents one of the most complex participation models in MISO energy & AS markets

 Following the foundational work set forth by R&D, ECC Conceptual Design covers bid to bill including market clearing and settlement

 Collaboration with stakeholders through <u>ECC task team</u> allowed the design to effectively capture the operating characteristics of CCGTs

Participants can register multiple configurations and specify offers based on actual costs/limits

- Three levels of offer parameters modelled under ECC
 - Resource level
 - Configuration level
 - Component level

	AllOff	1X1-A	1X1-B	2X1	2X1-DB	3X1	3X1-DB
AllOff	4	valid	valid	valid	invalid		
1X1-A	10min/0min/\$0	1	invalid	30min/10min/\$900	invalid		
1X1-B	10min/0min/\$0	invalid	1	30min/10min/\$900	invalid		
2X1	10min/0min/\$0	10min/10min/\$0	10min/10min/\$0	1	10min/0min/\$50		•
2X1-DB	invalid	invalid	invalid	10min/10min/\$0	1		
3X1							

Initially allow up to seven (7) configurations

	Physical Units				
Valid Configurations	Usable Capacity				
	CT1	CT2	DB	ST	
AllOff					
1Bx0		100			
0x1				50	
1x1A	100			80	
1x1A-DB	100		On	120	
2x1	100	100		200	
2x1-DB	100	100	On	250	

1		when start from all off						
	Configuration name	COLDSTARTUPCOST	INTERSTARTUPCOST	HOTSTARTUPCOST	HOTTOCOLDTIME(h)	HOTTOINTERTIME(h)		
	1X1-A	1500	1000	500	10	4		
	1X1-B	1500	1000	500	10	4		
	2x1	2500	2000	700	12	6		
	2X1-DB		N/A (invalid	to start from AllOff)				
	3x1	3500	3000	900	12	6		
	3x1-DB	N/A (invalid to start from			Alloff)			
	Alloff							
		INC	DIVIDUAL UNIT NAME	MINDOWNTIME(h)	MINUPTIME(h)	MAXRUNTIME(h)		
		CT:	1	8	5	N/A		
		CTZ	2	8	5	N/A		
		CT	3	8	5	N/A		
		ST		12	10	N/A		

DB

2 N/A

3X1-DB

MISO will optimize the commitment among multiple configurations instead of on/off of the whole plant

Today's simplified model

- MISO makes on/off commitment decision of the whole resource with no visibility of underlying components
- MISO determines dispatch MW based on as offered min/max output limits, ramp rates, etc. (can be inaccurate since limits/rates vary by configuration)
- Participants receive MISO instructions and determine which components to commit in order to produce the instructed MW

Enhanced Combined Cycle

- MISO makes commitment among up to seven as registered configurations
- MISO dispatches under more accurate configuration-level offers and can also account for operating limitations during transition
- Participants receive MISO instructions of which configuration to operate and can better follow dispatch with their operating characteristics more accurately considered

RT SCUC will allow configuration committed in Day-Ahead to change in Real-Time

- Access resource flexibility when Real-Time conditions are different than expected previously
 - Allow transition up to obtain the needed online capacity
 - Allow transition down to avoid being stranded in an inflexible configuration
- Maintain feasibility with preceding commitments by DA/RAC/LAC and respect resource operating parameters
 - SCUC constraints to ensure sufficient transition/notification time and satisfy min up/down time when returning to existing commitment plan
 - Establish eligibility criteria to maintain consistency between DA and RT and moderate financial exposure to buy-back DA position

SCED will account for resource operating needs especially during transition

- Dispatch energy if the resource State Estimator (SE) MW is within dispatch range and "current configuration" is consistent with commitment plan
- Echo back to SE MW if out of dispatch range or current configuration is inconsistent with commitment plan
- Do not clear reserves during scheduled "Transition Time" or when resource status is "in Transition"

Example: ECC model better addresses today's operation challenges of Duct Burner

- Usually can transit in/out DB quickly (~10min)
- Limited dispatch range and ramping
- Some have min run time (~ 2h) once into DB

- Offer: DB mode can be offered as a separate configuration with its own min/max output limits, ramp rates, min run times (at component level)
- <u>SCUC</u>: evaluates future system conditions and commits DB only when warranted by anticipated conditions for at least min run time (made-whole)
 - If system conditions change, LAC can transition out of DB to access the high ramp and large dispatch ranges of non-DB modes instead of being stranded in DB mode
- **SCED**: respects DB mode min/max output limits, ramp rates, etc. and resource can better follow the resulting dispatch instructions

Offer structure and market clearing changes impact cost causation in Make Whole Payments

Today's aggregate model

- Settlement is at whole resource level, and price-based revenues are calculated like other resources
- With resource offer similar to conventional units, Make Whole Payments are evaluated similarly
 - Startup and No-load costs, energy and reserve costs
 - DA/RT RSG make-whole for DA/RT committed resources
 - RTORSGP/DAMAP makewhole for resource committed in DA but dispatched differently in RT

Enhanced Combined Cycle

- Settlement is at resource level and revenues are calculated similarly
- With the change of offer structure and market clearing, MWPs change
 - Offer structure and transition cost
 - DA/RT overlapping commitment (e.g., 1x1 DA committed configuration is changed to 2x1 in RT)
 - Netting approach to determine which costs are to be covered by DA RSG or RT RSG
 - "Roll DAMAP into RT RSG" for resources <u>committed</u> and dispatched differently in RT

Make Whole Payments are designed to be consistent with MISO Settlement construct

- Principles: compensation based on underlying cost causation
 - Make whole to costs resulting from RTO/ISO commit/dispatch (RSG)
 - Preserve DA margin eroded by following RT schedule (DAMAP)
- DAMAP ensures resources do not lose DA profit by following RT dispatch; otherwise they may reduce flexibility to lock DA position
 - Under DA/RT two-market settlement, RT price volatility may cause resources to be dispatched differently and lose DA profit
 - Resources could set limits at DA position or set ramp close to 0 to reduce the risk from RT volatility, resulting in less operation flexibility

DA Profit – RT profit

Make up the difference between DA profit and RT profit Min {0, RT Price \times (RT MW – DA MW) – ($\int_0^{\text{RTMW}} \text{Cost} - \int_0^{\text{DAMW}} \text{Cost}$)}

Example: RT RSG to ensure cost recovery

Cost recovery for Energy, similar for reserves

Min {0, RT revenue – RT cost}

Example: DAMAP to Preserve DA margin

Energy buyback when transition down from 2x1-DB in DA to 2x1 in RT

"Roll DAMAP into RT RSG" approach

DA/RT overlapping commitment (RT changes 1x1 DA committed configuration to 2x1)

- DAMAP will continue to be evaluated for any hour with a DA position
- Nevertheless, the different DA/RT ECC output levels are associated with both dispatch decisions (like today's DAMAP) and commitment changes (new for ECC) coupled across the whole commitment period
- The idea is to use RT RSG to evaluate uncovered cost if output more MW and DAMAP to evaluate eroded DA margin if output less MW
- RT MWP is obtained by summing over products across the RT commitment periods and adding back startup, transition, no-load costs

Contingent design to apply existing ELMP to ECC and continued research on transition related costs

Readily implementable solution within ECC project

- Continue to use existing ELMP Online Fast Start Pricing logic
- <u>Eligibility rule</u>: a configuration is started (from ALLOFF) within 60min and has min run time of 1hr
- Most CCGTs are not qualified and will be setting prices like other non-Fast Start Resources

Further solution contingent on ELMP enhancement

- Expand ELMP logic to include transition related costs in prices
- Eligibility rule: a configuration that is transitioned (NOT from ALLOFF) within 60min and has min run time of one hour
- Duct Burner more likely qualifies to
 set prices like a Fast Start Resource

Add to ECC if ELMP enhancement is completed in time, but would not affect ECC implementation otherwise

Conclusion

Implementation to create value in production

Market design to transform concepts to solutions for operation realities and ensure

Computation adequate incentives advancement enabled market enhancement

