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Resource Planning Model (RPM)

e Capacity expansion model that simulates least-cost
investments in and operation of a generation and

transmission system

e Specialized for analysis of a regional electric system
over a utility planning horizon (10-20 years)

o Includes hourly chronological dispatch
o High spatial resolution of existing and new resources
o Real-world transmission system
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Database: Complete Western Interconnection data
for all major generation units and transmission lines

Technology Units ggggc(lgl:;;
Coal 143 39
Gas-CC 208 60
Nuclear 8 10
Gas-CT 434 20
Other Gas 184 23
Biomass 62 2
Geothermal 57 3
Hydropower 641 70
Pumped Hydro 15 4
PERELY PV 5 <1
CsP 10 <1
Wind 144 12
e et Total
Seale 1:13000000 20,086 Transmission Lines
BilyRobers| 2014 AN 10
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Flexible data platform allows development of
region-specific models

e Aggregated transmission and
generation outside of focus-

| region
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| * Maintains spatial resolution of
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Highly detailed renewable resource data is aggregated
for high definition in the focus-region
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Regions: PSC, WACM

Solar Resource Regions
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Motivation for be




Renewable deployment expected based on policy
and economics

e Central Scenario

* State Renewable Portfolio Standards (RPS) —— Low Fuel rice
== High Fuel Prices

o Ca | ifo r n i a A B 3 2 ------ Low Economic Growth
----- High Economic Growth

* EPA Clean Power Plan (CPP) === Low CostSolar & Wind

@« = High Cost Solar & Wind

e A ccelerated Coal Retirements

Results from ReEDS 2015 Standard Scenarios (Sullivan et al. 2015) Extended Nuclear Lifetime
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Increased system flexibility is known to support RE
grid integration

90%

| 80% flexiblity (12 GW min load) / o D
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—— 100% flexibility (0 min load)
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Fraction of System Electricity from Wind

Fraction of Incremental Wind Generation Curtailed

(Denholm and Hand 2011)
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Challenges for Capacity Expansion Modeling
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Challenges for Capacity Expansion Modeling

e QOperational issues. With a given portfolio of assets
including variable generation (VG),

o Is dispatch feasible?
o Are there enough operating reserves?
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o Flexible, but energy-constrained resources: capacity
value, use for energy and operating reserves, ability to
reduce curtailment
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Challenges for Capacity Expansion Modeling

e QOperational issues. With a given portfolio of assets
including variable generation (VG),

o Is dispatch feasible?
o Are there enough operating reserves?

e Resource valuation issues

o Flexible, but energy-constrained resources: capacity
value, use for energy and operating reserves, ability to
reduce curtailment

e Associated computational limitations

o Optimization formulation geared toward annual
investment decisions

o Necessitates reduced geospatial and temporal resolution
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Approach

0. RPM was initially designed with high renewable
futures and flexibility in mind

o Chronological, hourly dispatch

o Operating reserves based on VG penetration

o Unit commitment and ramping constraints

o Unit-level detail and transmission in focus region
o Dynamic capacity value calculations
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Approach

0. RPM was initially designed with high renewable
futures and flexibility in mind

o Chronological, hourly dispatch

o Operating reserves based on VG penetration

o Unit commitment and ramping constraints

o Unit-level detail and transmission in focus region

o Dynamic capacity value calculations
e RPM can capture many of the key valuations for
flexibility.
 However computational limitations prevent adequate
‘ coverage over time (e.g., hourly is not possible).
 We use time-series and load duration curve techniques

outside of the optimization to better capture flexibility
during “tail” events.
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Approach

1. “Yoga for capacity expansion models” — capture
flexibility needs and provision in models with
limited temporal resolution and coverage

NATIONAL RENEWABLE ENERGY LABORATORY



Approach

1. “Yoga for capacity expansion models” — capture
flexibility needs and provision in models with
limited temporal resolution and coverage

o Hourly time series and load duration curve methods,
similar to NREL REFlex model.
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Approach
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o Parameterize impacts of VG and flexible technologies
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Approach

1. “Yoga for capacity expansion models” — capture
flexibility needs and provision in models with
limited temporal resolution and coverage

o Hourly time series and load duration curve methods,
similar to NREL REFlex model.

o Parameterize impacts of VG and flexible technologies
on capacity value and curtailment.

o Similar, but less-detailed methods being used in
global Integrated Assessment Models
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Approach

2. Add flexible technology investments

o Storage with maximum and minimum energy
constraints

o Capture appropriate value streams, some of which
require 8760 calculations (e.g. capacity value,
curtailment reduction)

o Current and future cost estimates vary significantly
and are uncertain. Thus we include a range of
possible costs to determine tipping points for
measurable deployment.
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Yoga: Storage dispatch heuristic
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Yoga: Storage dispatch heuristic

e Storage technologies have limitations on when they
can be used based on their state of charge and
energy capacity
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Yoga: Storage dispatch heuristic

e Storage technologies have limitations on when they
can be used based on their state of charge and
energy capacity

* Assume grid operators will utilize storage efficiently,
particularly during peak periods
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Yoga: Storage dispatch heuristic

e Storage technologies have limitations on when they
can be used based on their state of charge and
energy capacity

* Assume grid operators will utilize storage efficiently,
particularly during peak periods

* Create a heuristic dispatch to maximize capacity
value and minimize curtailment, which is used to
create a modified ‘storage load curve’

Discharge

Charge
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Yoga: Capacity Value
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Yoga: Capacity Value

e Capture shift in net peak load based on top 100 hours
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Yoga: Capacity Value

e Capture shift in net peak load based on top 100 hours
* Values geospatial and technology diversity
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Yoga: Capacity Value

e Capture shift in net peak load based on top 100 hours
* Values geospatial and technology diversity
At the NERC level and by storage technology:

o capacity value of existing storage = <NLDC —SLDC>, 1o, / existing capacity
o marginal capacity value of new storage = <SLDC(8)>,, 19 / 0

| Capacity Value
Of Storage

W
NLDC

demand

N hour
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Yoga: Curtailment
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Yoga: Curtailment

e Curtailment based on interplay of NLDC, min-gen,
and storage dispatch.
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Yoga: Curtailment

e Curtailment based on interplay of NLDC, min-gen,
and storage dispatch.

 We use a regression based on PLEXOS production
cost simulations to calculate the effective min-gen
and identify how storage impacts curtailment
below that line.
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Yoga: Curtailment

e Curtailment based on interplay of NLDC, min-gen,

and storage dispatch.

 We use a regression based on PLEXOS production
cost simulations to calculate the effective min-gen
and identify how storage impacts curtailment

below that line.

Effective Min-Gen

Curtailment
with Storage

demand

N hour
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Capacity Expansion for Baseline Scenarios
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Annual Generation for Baseline Scenarios
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Storage cost trajectories

— Li-lon Battery; 0.25h
— Li-lon Battery; 0.5h
- Li-lon Battery; 1h
= Li-lon Battery; 2h
- Li-lon Battery; 4h
Li-lon Battery; 8h

H

- = High Cost Storage
— Mid Cost Storage
— Low Cost Storage

Capital Cost, $/W

N

2010 2015 2020 2025 2030 2035

Trajectories from Cole et. al. for several storage capacities
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Storage capacity built by RPM

15 Base Base, HSC Base, LSC
% 107 M Li-lon Battery; 0.25h
= M Li-lon Battery; 0.5h
= 2l Li-lon Battery; 1h
S M Li-lon Battery: 2h
o © Li-lon Battery; 4h
8 5- Li-lon Battery, 8h

2015 2020 2025 2030 2035 2015 2020 2025 2030 2035 2015 2020 2025 2030 2035

NATIONAL RENEWABLE ENERGY LABORATORY




15

Capacity, GW

30

Capacity, GW

-
o

a

N
o

-
o

Storage capacity built by RPM
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Storage Cost Impacts on Annual Generation, Base

= 30 High Storage Costs
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Storage Cost Impacts on Annual Generation, Base

= 30 High Storage Costs
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Storage Cost Impacts on Annual Generation, High RE

40 High Storage Costs
e
; . . .
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Storage Cost Impacts on Annual Generation, High RE

40 High Storage Costs
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Dispatch, High RE, low storage costs

LOW MID HIGH

12 18 24 12
Hour of Dispatch Period
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Storage Operation, long-duration

Storage Use: Generic Storage c6 Li-lon Battery; 8h
LOW MID HIGH PEAK

. spillage

0 " spin
" -
& -5,000- B flex
© Wireg
8 5000~ n B generation
2 0- § B charge
(@))]
-5,000 - .

12 18 24 6 12 18 24 6 12 18 24 6 12 18 24
Hour of D|spatch Period

* Charging largely occurs during high solar hours

* Dispatch largely occurs during afternoon peak

* Long-duration storage provides spinning and regulation
reserves
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Storage Operation, short-duration

Storage Use: Generic Storage cO Li-lon Battery; 0.25h
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Value of Storage, Base, mid storage costs
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Value of Storage, Base, mid storage costs

Battery Storage

100 -

50 -

Storage is only installed
in 2020 and 2025 to meet
AB32

Reserves provision
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Value of Storage, High RE, low storage costs

e Storage is only installed
in 2020 to meet AB32,
with reserves provision
enabling higher energy
capacities

e 30-min to 1-hour storage
are installed largely for
reserves provision

* By 2030, 4 and 8 hour
storage are installed for
capacity, curtailment
reduction, and energy
shifting

Revenue, $/kW-yr
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Conclusions

e RPM represents renewables and flexible technology
with high resolution in resource availability and

dispersion
* Use methodology designed to fully capture the tails

of operation to ensure we capture the full value
flexible technologies provide

* RPM represents multiple value streams available to
storage technologies in planning and operations of
an electric grid
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www.nrel.gov
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Storage Cost Impacts on Capacity, Base

= 15 High Storage Costs
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Storage Cost Impacts on Capacity, High RE
High Storage Costs
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Resource Planning Model (RPM)

For each model year (2010, 2015, ..., 2030)...

min (capital and fixed costs for new generators) +
(capital and fixed costs for new transmission) +
(variable, fuel, start-up, and carbon costs) +
(transmission hurdle rates)

s.t. allowed locations and sizes of new assets
wind and solar resource availability
load balancing (hourly chronological, 4 dispatch periods)
transmission constraints
capacity, reserve, and energy constraints
policy constraints (RPS and CPP)
unit commitment (optional)
minimum plant size (optional)
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