

Modeling storage technologies in Capacity Expansion Models

Brady Stoll, Ph.D.

Strategic Energy Analysis Center

FERC Technical Conference June 28, 2017

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

- RPM Overview
- Motivation for better storage modeling
- Storage Methodology
- Results

RPM Overview

Resource Planning Model (RPM)

- Capacity expansion model that simulates least-cost investments in and operation of a generation and transmission system
- Specialized for analysis of a *regional* electric system over a utility planning horizon (10-20 years)
 - Includes hourly chronological dispatch
 - $_{\odot}\,$ High spatial resolution of existing and new resources
 - Real-world transmission system

Database: Complete Western Interconnection data for all major generation units and transmission lines

Technology	Units	Capacity in 2010 (GW)
Coal	143	39
Gas-CC	208	60
Nuclear	8	10
Gas-CT	434	20
Other Gas	184	23
Biomass	62	2
Geothermal	57	3
Hydropower	641	70
Pumped Hydro	15	4
PV	5	< 1
CSP	10	< 1
Wind	144	12
Total	1,911	243
20,086 Transmission Lines		

Flexible data platform allows development of region-specific models

- Aggregated transmission and generation outside of focusregion
- Maintains spatial resolution of focus region
- Full transmission model and individual units within focus region
- Represent hurdle-rates between regions
- Temporally consistent with production cost model

Highly detailed renewable resource data is aggregated for high definition in the focus-region

Solar Resource Regions

Motivation for better storage modeling

Renewable deployment expected based on policy and economics

- State Renewable Portfolio Standards (RPS)
- California AB32
- EPA Clean Power Plan (CPP)

Increased system flexibility is known to support RE grid integration

- Operational issues. With a given portfolio of assets including variable generation (VG),
 - Is dispatch feasible?
 - Are there enough operating reserves?

- Operational issues. With a given portfolio of assets including variable generation (VG),
 - Is dispatch feasible?
 - Are there enough operating reserves?
- Resource valuation issues
 - Flexible, but energy-constrained resources: capacity value, use for energy and operating reserves, ability to reduce curtailment

- Operational issues. With a given portfolio of assets including variable generation (VG),
 - Is dispatch feasible?
 - Are there enough operating reserves?
- Resource valuation issues
 - Flexible, but energy-constrained resources: capacity value, use for energy and operating reserves, ability to reduce curtailment
- Associated computational limitations
 - Optimization formulation geared toward annual investment decisions
 - Necessitates reduced geospatial and temporal resolution

Methodology

- 0. RPM was initially designed with high renewable futures and flexibility in mind
 - Chronological, hourly dispatch
 - Operating reserves based on VG penetration
 - Unit commitment and ramping constraints
 - Unit-level detail and transmission in focus region
 - Dynamic capacity value calculations

- 0. RPM was initially designed with high renewable futures and flexibility in mind
 - Chronological, hourly dispatch
 - Operating reserves based on VG penetration
 - Unit commitment and ramping constraints
 - Unit-level detail and transmission in focus region
 - Dynamic capacity value calculations
 - RPM can capture many of the key valuations for flexibility.
 - However computational limitations prevent adequate coverage over time (e.g., hourly is not possible).
 - We use time-series and load duration curve techniques outside of the optimization to better capture flexibility during "tail" events.

 "Yoga for capacity expansion models" – capture flexibility needs and provision in models with limited temporal resolution and coverage

- "Yoga for capacity expansion models" capture flexibility needs and provision in models with limited temporal resolution and coverage
 - Hourly time series and load duration curve methods, similar to NREL REFlex model.

- "Yoga for capacity expansion models" capture flexibility needs and provision in models with limited temporal resolution and coverage
 - Hourly time series and load duration curve methods, similar to NREL REFlex model.
 - Parameterize impacts of VG and flexible technologies on capacity value and curtailment.

- "Yoga for capacity expansion models" capture flexibility needs and provision in models with limited temporal resolution and coverage
 - Hourly time series and load duration curve methods, similar to NREL REFlex model.
 - Parameterize impacts of VG and flexible technologies on capacity value and curtailment.
 - Similar, but less-detailed methods being used in global Integrated Assessment Models

- 2. Add flexible technology investments
 - Storage with maximum and minimum energy constraints
 - Capture appropriate value streams, some of which require 8760 calculations (e.g. capacity value, curtailment reduction)
 - Current and future cost estimates vary significantly and are uncertain. Thus we include a range of possible costs to determine tipping points for measurable deployment.

 Storage technologies have limitations on when they can be used based on their state of charge and energy capacity

- Storage technologies have limitations on when they can be used based on their state of charge and energy capacity
- Assume grid operators will utilize storage efficiently, particularly during peak periods

- Storage technologies have limitations on when they can be used based on their state of charge and energy capacity
- Assume grid operators will utilize storage efficiently, particularly during peak periods
- Create a heuristic dispatch to maximize capacity value and minimize curtailment, which is used to create a modified 'storage load curve'

• Capture shift in net peak load based on top 100 hours

- Capture shift in net peak load based on top 100 hours
- Values geospatial and technology diversity

- Capture shift in net peak load based on top 100 hours
- Values geospatial and technology diversity
- At the NERC level and by storage technology:
 - \circ capacity value of existing storage = <NLDC SLDC>_{top 100} / existing capacity
 - \circ marginal capacity value of new storage = <SLDC(δ)>_{top 100} / δ

• Curtailment based on interplay of NLDC, min-gen, and storage dispatch.

- Curtailment based on interplay of NLDC, min-gen, and storage dispatch.
- We use a regression based on PLEXOS production cost simulations to calculate the effective min-gen and identify how storage impacts curtailment below that line.

- Curtailment based on interplay of NLDC, min-gen, and storage dispatch.
- We use a regression based on PLEXOS production cost simulations to calculate the effective min-gen and identify how storage impacts curtailment below that line.

Scenarios

Capacity Expansion for Baseline Scenarios

Base

High Renewable

- Existing policies
- Mid-line PV and wind costs
- Mid Storage costs
- AEO Reference Natural Gas prices
- • No Carbon price

- Existing policies
- Mid-line PV and wind costs
- Mid Storage costs
- AEO High Natural Gas prices
- Median Carbon price

Annual Generation for Baseline Scenarios

High Renewables

Curtailment CT Storage CSP PV Wind Other Renewable CC Hydro

- Solar growth starts in 2020
- Mild wind growth
- Significant curtailment doesn't start until 2035
- Increase in gas CC generation in 2035

- Solar growth starts in 2020
- Significant wind generation in 2025
- Significant curtailment starts in 2030

Storage cost trajectories

Trajectories from Cole et. al. for several storage capacities

Storage capacity built by RPM

Storage capacity built by RPM

Storage Cost Impacts on Annual Generation, Base

High Storage Costs

- Reduction of wind and increase of gas CC
- Reduction of curtailment largely from lower renewable dispatch

Storage Cost Impacts on Annual Generation, Base

NATIONAL RENEWABLE ENERGY LABORATORY

Storage Cost Impacts on Annual Generation, High RE

High Storage Costs

- Increase in curtailment and gas generation
- Reduction in solar and storage generation

Storage Cost Impacts on Annual Generation, High RE

Dispatch, High RE, low storage costs

Storage Operation, long-duration

- Charging largely occurs during high solar hours
- Dispatch largely occurs during afternoon peak
- Long-duration storage provides spinning and regulation reserves

Storage Operation, short-duration

- Short-term batteries are mostly used for regulation reserves
- Generation provided occasionally

spillage

generation

charge

spin

flex

reg

Value of Storage, Base, mid storage costs

Value of Storage, Base, mid storage costs

- Storage is only installed in 2020 and 2025 to meet AB32
- Reserves provision enables higher energy capacities in these years
- No economic storage installed until 2035
- 2-hour storage installed for capacity, curtailment reduction, and reserves

Value of Storage, High RE, low storage costs

- Storage is only installed in 2020 to meet AB32, with reserves provision enabling higher energy capacities
- 30-min to 1-hour storage are installed largely for reserves provision
- By 2030, 4 and 8 hour storage are installed for capacity, curtailment reduction, and energy shifting

Conclusions

- RPM represents renewables and flexible technology with high resolution in resource availability and dispersion
- Use methodology designed to fully capture the tails of operation to ensure we capture the full value flexible technologies provide
- RPM represents multiple value streams available to storage technologies in planning and operations of an electric grid

Questions?

www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Who are we?

Clayton Barrows Ph.D. Energy and Mineral Engineering Pennsylvania State University

Elaine Hale Ph.D. Chemical Engineering University of Texas, Austin

Anthony Lopez M.S. Geographic Information Science University of Denver

Trieu Mai Ph.D. Theoretical Physics University of California, Santa Cruz

Brady Stoll Ph.D. Mechanical Engineering University of Texas, Austin

Dylan Hettinger B.S. Geography Appalachian State University

Storage Cost Impacts on Capacity, Base

High Storage Costs

- Approximately the same total storage capacity, but smaller energy capacities
- Reduction of wind capacity gets built, with increase in gas CC units

Low Storage Costs

- Large increase in total storage capacity built, with larger energy capacities built starting in 2025
- Increase in solar capacity, reduction of wind and both gas technologies

Storage Cost Impacts on Capacity, High RE

High Storage Costs

- Reduction in storage capacity starting in 2030
- Increase in wind and gas technologies and decrease in solar PV

Low Storage Costs

- Large increase in total storage capacity built, with larger energy capacities built starting in 2030
- Decrease in wind and gas technologies

For each model year (2010, 2015, ..., 2030)...

- min (capital and fixed costs for new generators) +
 (capital and fixed costs for new transmission) +
 (variable, fuel, start-up, and carbon costs) +
 (transmission hurdle rates)
- s.t. allowed locations and sizes of new assets wind and solar resource availability load balancing (hourly chronological, 4 dispatch periods) transmission constraints capacity, reserve, and energy constraints policy constraints (RPS and CPP) unit commitment (optional) minimum plant size (optional)