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•  Capacity	expansion	model	that	simulates	least-cost	
investments	in	and	operaHon	of	a	generaHon	and	
transmission	system	

•  Specialized	for	analysis	of	a	regional	electric	system	
over	a	uHlity	planning	horizon	(10-20	years)	
o  Includes	hourly	chronological	dispatch		
o  High	spaHal	resoluHon	of	exisHng	and	new	resources	
o  Real-world	transmission	system		

Resource	Planning	Model	(RPM)	
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Database:	Complete	Western	InterconnecHon	data	
for	all	major	generaHon	units	and	transmission	lines		

Technology	 Units	 Capacity	in	
2010	(GW)	

Coal	 143	 39	

Gas-CC	 208	 60	

Nuclear	 8	 10	

Gas-CT	 434	 20	

Other	Gas	 184	 23	

Biomass	 62	 2	

Geothermal	 57	 3	

Hydropower	 641	 70	

Pumped	Hydro	 15	 4	

PV	 5	 <	1	

CSP	 10	 <	1	

Wind	 144	 12	

Total	 1,911	 243	

20,086	Transmission	Lines	
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Flexible	data	pla`orm	allows	development	of	
region-specific	models	

•  Aggregated	transmission	and	
generaHon	outside	of	focus-
region	

•  Maintains	spaHal	resoluHon	of	
focus	region	

•  Full	transmission	model	and	
individual	units	within	focus	
region	

•  Represent	hurdle-rates	between	
regions	

•  Temporally	consistent	with	
producHon	cost	model		



7 

Highly	detailed	renewable	resource	data	is	aggregated	
for	high	definiHon	in	the	focus-region	

Solar Resource Regions 



MoHvaHon	for	beJer	storage	
modeling	
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•  State	Renewable	Por`olio	Standards	(RPS)	
•  California	AB32	
•  EPA	Clean	Power	Plan	(CPP)	
	

Results	from	ReEDS	2015	Standard	Scenarios	(Sullivan	et	al.	2015)	

Renewable	deployment	expected	based	on	policy	
and	economics	
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Increased	system	flexibility	is	known	to	support	RE	
grid	integraHon	

(Denholm	and	Hand	2011)	
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•  OperaHonal	issues.	With	a	given	por`olio	of	assets	
including	variable	generaHon	(VG),	
o  Is	dispatch	feasible?	
o  Are	there	enough	operaLng	reserves?	

•  Resource	valuaHon	issues	
o  Flexible,	but	energy-constrained	resources:	capacity	
value,	use	for	energy	and	operaHng	reserves,	ability	to	
reduce	curtailment	

•  Associated	computaHonal	limitaHons	
o  OpHmizaHon	formulaHon	geared	toward	annual	
investment	decisions	

o  Necessitates	reduced	geospaLal	and	temporal	resoluLon	

Challenges	for	Capacity	Expansion	Modeling	
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Methodology	
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0.	 	RPM	was	iniHally	designed	with	high	renewable	
futures	and	flexibility	in	mind	
o  Chronological,	hourly	dispatch	
o  OperaHng	reserves	based	on	VG	penetraHon	
o  Unit	commitment	and	ramping	constraints	
o  Unit-level	detail	and	transmission	in	focus	region	
o  Dynamic	capacity	value	calculaHons	

Approach	

•  RPM	can	capture	many	of	the	key	valuaHons	for	
flexibility.	

•  However	computaHonal	limitaHons	prevent	adequate	
coverage	over	Hme	(e.g.,	hourly	is	not	possible).		

•  We	use	Hme-series	and	load	duraHon	curve	techniques	
outside	of	the	opHmizaHon	to	beJer	capture	flexibility	
during	“tail”	events.	
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1.  “Yoga	for	capacity	expansion	models”	–	capture	
flexibility	needs	and	provision	in	models	with	
limited	temporal	resoluHon	and	coverage	
o  Hourly	Hme	series	and	load	duraHon	curve	methods,	
similar	to	NREL	REFlex	model.	

o  Parameterize	impacts	of	VG	and	flexible	technologies	
on	capacity	value	and	curtailment.	

o  Similar,	but	less-detailed	methods	being	used	in	
global	Integrated	Assessment	Models	

Approach	
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2.  Add	flexible	technology	investments	
o  Storage	with	maximum	and	minimum	energy	
constraints	

o  Capture	appropriate	value	streams,	some	of	which	
require	8760	calculaHons	(e.g.	capacity	value,	
curtailment	reducHon)	

o  Current	and	future	cost	esHmates	vary	significantly	
and	are	uncertain.	Thus	we	include	a	range	of	
possible	costs	to	determine	Hpping	points	for	
measurable	deployment.	

Approach	
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•  Storage	technologies	have	limitaHons	on	when	they	
can	be	used	based	on	their	state	of	charge	and	
energy	capacity	

•  Assume	grid	operators	will	uHlize	storage	efficiently,	
parHcularly	during	peak	periods	

•  Create	a	heurisHc	dispatch	to	maximize	capacity	
value	and	minimize	curtailment,	which	is	used	to	
create	a	modified	‘storage	load	curve’	

Yoga:	Storage	dispatch	heurisHc	

Charge	

Discharge	
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•  Capture	shin	in	net	peak	load	based	on	top	100	hours	
•  Values	geospaHal	and	technology	diversity	
•  At	the	NERC	level	and	by	storage	technology:	

o  capacity	value	of	exisHng	storage	=	<NLDC	–	SLDC>top	100	/	exisHng	capacity	
o  marginal	capacity	value	of	new	storage	=	<SLDC(δ)>top	100	/	δ	

Yoga:	Capacity	Value		
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•  Curtailment	based	on	interplay	of	NLDC,	min-gen,	
and	storage	dispatch.	

•  We	use	a	regression	based	on	PLEXOS	producHon	
cost	simulaHons	to	calculate	the	effecHve	min-gen	
and	idenHfy	how	storage	impacts	curtailment	
below	that	line.	

Yoga:	Curtailment		
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Scenarios	
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Capacity	Expansion	for	Baseline	Scenarios	
Base	

High	Renewable	

•  ExisHng	policies	
•  Mid-line	PV	and	wind	costs	
•  Mid	Storage	costs	
•  AEO	Reference	Natural	Gas	prices	
•  No	Carbon	price	

•  ExisHng	policies	
•  Mid-line	PV	and	wind	costs	
•  Mid	Storage	costs	
•  AEO	High	Natural	Gas	prices	
•  Median	Carbon	price		
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Annual	GeneraHon	for	Baseline	Scenarios	

High	Renewables	

Base	

•  Solar	growth	starts	in	2020	
•  Mild	wind	growth	
•  Significant	curtailment	doesn’t	

start	unHl	2035	
•  Increase	in	gas	CC	generaHon	in	

2035	

•  Solar	growth	starts	in	2020	
•  Significant	wind	generaHon	in	

2025	
•  Significant	curtailment	starts	

in	2030	



38 

Storage	cost	trajectories	

Trajectories	from	Cole	et.	al.	for	several	storage	capaciHes	
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Storage	capacity	built	by	RPM	
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Storage	capacity	built	by	RPM	
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Storage	Cost	Impacts	on	Annual	GeneraHon,	Base	
High	Storage	Costs	
•  ReducHon	of	wind	and	

increase	of	gas	CC	
•  ReducHon	of	curtailment	

largely	from	lower	renewable	
dispatch	

Low	Storage	Costs	
•  Large	increase	solar	and	

storage	generaHon	
•  ReducHon	in	solar	curtailment	

and	coal	generaHon	
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Storage	Cost	Impacts	on	Annual	GeneraHon,	High	RE	
High	Storage	Costs	
•  Increase	in	curtailment	and	gas	

generaHon	
•  ReducHon	in	solar	and	storage	

generaHon	

Low	Storage	Costs	
•  Increase	in	solar,	storage	and	

gas	generaHon	
•  Decrease	in	curtailment,	and	

wind	generaHon	from	reduced	
installaHons	
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Dispatch,	High	RE,	low	storage	costs	
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Storage	OperaHon,	long-duraHon	

•  Charging	largely	occurs	during	high	solar	hours	
•  Dispatch	largely	occurs	during	anernoon	peak	
•  Long-duraHon	storage	provides	spinning	and	regulaHon	
reserves	
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Storage	OperaHon,	short-duraHon	

•  Short-term	baJeries	
are	mostly	used	for	
regulaHon	reserves	

•  GeneraHon	provided	
occasionally	
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Value	of	Storage,	Base,	mid	storage	costs	

•  Storage	is	only	installed	
in	2020	and	2025	to	meet	
AB32	

•  Reserves	provision	
enables	higher	energy	
capaciHes	in	these	years	

•  No	economic	storage	
installed	unHl	2035	

•  2-hour	storage	installed	
for	capacity,	curtailment	
reducHon,	and	reserves	
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Value	of	Storage,	High	RE,	low	storage	costs		

•  Storage	is	only	installed	
in	2020	to	meet	AB32,	
with	reserves	provision	
enabling	higher	energy	
capaciHes	

•  30-min	to	1-hour	storage	
are	installed	largely	for	
reserves	provision	

•  By	2030,	4	and	8	hour	
storage	are	installed	for	
capacity,	curtailment	
reducHon,	and	energy	
shining	
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•  RPM	represents	renewables	and	flexible	technology	
with	high	resoluHon	in	resource	availability	and	
dispersion	

•  Use	methodology	designed	to	fully	capture	the	tails	
of	operaHon	to	ensure	we	capture	the	full	value	
flexible	technologies	provide	

•  RPM	represents	mulHple	value	streams	available	to	
storage	technologies	in	planning	and	operaHons	of	
an	electric	grid	

Conclusions	



QuesHons?	
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Storage	Cost	Impacts	on	Capacity,	Base	
High	Storage	Costs	
•  Approximately	the	same	total	

storage	capacity,	but	smaller	
energy	capaciHes		

•  ReducHon	of	wind	capacity	
gets	built,	with	increase	in	gas	
CC	units	

Low	Storage	Costs	
•  Large	increase	in	total	storage	

capacity	built,	with	larger	
energy	capaciHes	built	starHng	
in	2025	

•  Increase	in	solar	capacity,	
reducHon	of	wind	and	both	gas	
technologies	
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Storage	Cost	Impacts	on	Capacity,	High	RE	
High	Storage	Costs	
•  ReducHon	in	storage	capacity	

starHng	in	2030	
•  Increase	in	wind	and	gas	

technologies	and	decrease	in	
solar	PV	

Low	Storage	Costs	
•  Large	increase	in	total	storage	

capacity	built,	with	larger	
energy	capaciHes	built	starHng	
in	2030	

•  Decrease	in	wind	and	gas	
technologies	
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For	each	model	year	(2010,	2015,	…,	2030)…	
	

min	 	(capital	and	fixed	costs	for	new	generators)	+		
	(capital	and	fixed	costs	for	new	transmission)	+		
	(variable,	fuel,	start-up,	and	carbon	costs)	+		
	(transmission	hurdle	rates)	

	

s.t.	 	allowed	locaHons	and	sizes	of	new	assets	
	 	wind	and	solar	resource	availability	

load	balancing	(hourly	chronological,	4	dispatch	periods)	
transmission	constraints	
capacity,	reserve,	and	energy	constraints	
policy	constraints	(RPS	and	CPP)	
unit	commitment	(opHonal)	
minimum	plant	size	(opHonal)	
	

Resource	Planning	Model	(RPM)	


